Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 22(11): 1960-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25174586

ABSTRACT

Critical limb ischemia (CLI) is often poorly treatable by conventional management and alternatives such as autologous cell therapy are increasingly investigated. Whereas previous studies showed a substantial impairment of neovascularization capacity in primary bone-marrow (BM) isolates from patients, little is known about dysfunction in patient-derived BM mesenchymal stromal cells (MSCs). In this study, we have compared CLI-MSCs to healthy controls using gene expression profiling and functional assays for differentiation, senescence and in vitro and in vivo pro-angiogenic ability. Whereas no differentially expressed genes were found and adipogenic and osteogenic differentiation did not significantly differ between groups, chondrogenic differentiation was impaired in CLI-MSCs, potentially as a consequence of increased senescence. Migration experiments showed no differences in growth factor sensitivity and secretion between CLI- and control MSCs. In a murine hind-limb ischemia model, recovery of perfusion was enhanced in MSC-treated mice compared to vehicle controls (71 ± 24% versus 44 ± 11%; P < 1 × 10(-6)). CLI-MSC- and control-MSC-treated animals showed nearly identical amounts of reperfusion (ratio CLI:Control = 0.98, 95% CI = 0.82-1.14), meeting our criteria for statistical equivalence. The neovascularization capacity of MSCs derived from CLI-patients is not compromised and equivalent to that of control MSCs, suggesting that autologous MSCs are suitable for cell therapy in CLI patients.


Subject(s)
Ischemia/pathology , Ischemia/therapy , Leg/pathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Animals , Cell Differentiation , Cells, Cultured , Cellular Senescence , Disease Models, Animal , Gene Expression Profiling , Healthy Volunteers , Humans , Leg/blood supply , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...