Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37755201

ABSTRACT

Rapid urbanization and industrialization in the past decades have resulted in vast amounts of wastewater containing pollutants such as inorganic chemicals, pathogens, pharmaceuticals, plant nutrients, petrochemical products, and microplastics [...].

2.
Membranes (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37505043

ABSTRACT

The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns due to their potential to pose irreversible threats to the ecosystems. Therefore, the effective treating of these large volumes of oily wastewater is an inevitable challenge to address. Separating oil-water mixtures by membranes has been an attractive technology due to the high oil removal efficiency and low energy consumption. However, conventional oil-water separation membranes may not meet the complex requirements for the sustainable treatment of wastewater due to their relatively shorter life cycle, lower chemical and thermal stability, and permeability/selectivity trade-off. Recent advancements in two-dimensional (2D) materials have provided opportunities to address these challenges. In this article, we provide a brief review of the most recent advancements in oil-water separation membranes modified with 2D materials, with a focus on MXenes, graphenes, metal-organic frameworks, and covalent organic frameworks. The review briefly covers the backgrounds, concepts, fabrication methods, and the most recent representative studies. Finally, the review concludes by describing the challenges and future research directions.

3.
RSC Adv ; 8(13): 6858-6869, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-35540368

ABSTRACT

Laser composite surfacing (LCS) is a photon driven manufacturing technology that can be utilized for depositing hybrid metal matrix composite coatings (HMMC) on softer Ti/Al/Mg alloys to enhance their tribo-mechanical properties. LCS offers the advantages of higher directionality, localized microstructural refinement and higher metallurgical bonding between coating and substrate. The current research presents the tribo-mechanical evaluation and characterization of solid lubricant based Ni-WC coatings deposited by LCS on Al-Si piston alloy by varying the concentration of graphite between 5-to-15-weight percentage. The tribological behavior of LCS samples was investigated using a ball-on-plate tribometer. Results indicate that the surface hardness, wear rate and friction coefficient of the Al-Si hypereutectic piston alloy were improved after LCS of graphite based HMMC coatings. The maximum surface hardness of 781H v was acquired for the Ni-WC coating containing 5 wt% graphite. The friction coefficient of Al-Si under dry sliding conditions was reduced from 0.47 to 0.21. The reduction in the friction coefficient was attributed to the formation of a shearable transfer layer, which prevented delamination and reduced adhesion, abrasion and fatigue cracking.

SELECTION OF CITATIONS
SEARCH DETAIL
...