Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(7): 8266-8273, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405520

ABSTRACT

Lead acetate (PbAc2) is a promising precursor salt for large-scale production of perovskite solar cells, as its high solubility in polar solvents enables the use of scalable deposition methods such as inkjet printing and dip coating. In this study, uniform (40-230 nm) PbAc2 thin films were prepared via dip coating under near ambient lab conditions by tuning the PbAc2 precursor concentration. In a second step, these PbAc2 films were converted to methylammonium lead iodide (MAPI) perovskite by immersing them into methylammonium iodide (MAI) solutions. The nucleation and growth processes at play were controlled by altering key parameters, such as air humidity during the lead acetate deposition and MAI concentration when converting the PbAc2 film to MAPI. The research revealed that lead acetate is sensitive toward humidity and can undergo hydroxylation reactions affecting the reproducibility and quality of the produced solar cells. However, drying the PbAc2 films under low relative humidity (<1%) prior to conversion enables the production of high-quality MAPI films without the need of glovebox processing. Furthermore, SEM characterization revealed that the surface coverage of the MAPI film increased significantly with an increase of the MAI concentration at the conversion stage. The resulting morphology of the MAPI films can be explained by a standard nucleation and growth mechanism. Preliminary solar cells were produced using these MAPI films as the active layer. The best performing devices were obtained with a 140 nm thick lead acetate film converted to MAPI using a 12 mg/mL MAI solution, as these parameters resulted in a good surface coverage of the MAPI film. The results show that the methodology holds potential toward large-scale production of perovskite solar cells under near ambient conditions, which substantially simplifies the fabrication and lowers the production costs.

2.
Dent Mater ; 38(12): 1878-1885, 2022 12.
Article in English | MEDLINE | ID: mdl-36207169

ABSTRACT

OBJECTIVES: A tribochemical silica-coating (TSC) method has been developed to improve the adhesion of dental resin composites to various substrates. The method utilizes airborne-particle abrasion using particles having a silica surface and an alumina core. The impact of the TSC method has been extensively studied but less attention has been paid to the characterization of the silica-modified alumina particles. Due to the role of silicate ions in cell biology, e.g. osteoblast function and bone mineralization, silica-modified alumina particles could also be potentially used as a biomaterial in scaffolds of tissue regeneration. Thus, we carried out detailed physicochemical characterization of the silica-modified alumina particles. METHODS: Silica-modified alumina particles (Rocatec, 3 M-ESPE) of an average particle size of 30 µm were studied for the phase composition, spectroscopic properties, surface morphology, dissolution, and the capability to modify the pH of an immersion solution. The control material was alumina without silica modification. Pre-osteoblastic MC3T3-E1 cells were used to assess cell viability in the presence of the particles. Cell viability was tested at 1, 3, 7 and 10 days of culture with various particle quantities. Multivariate ANOVA was used for statistical analyses. RESULTS: Minor quantities of silica enrichment was verified on the surface of alumina particles and the silica did not evenly cover the alumina surface. In the dissolution test, no change in the pH of the immersion solution was observed in the presence of the particles. Minor quantities of silicate ions were dissolved from the particles to the cell culture medium but no major differences were observed in the viability of pre-osteoblastic cells, whether the cells were cultured with silica-modified or plain alumina particles. SIGNIFICANCE: Characterization of silica-modified alumina particles demonstrated differences in the particle surface structure compared to control alumina. Dissolution of silica layer in Tris buffer or SBF solution varied from that of cell culture medium: minor quantities of dissolved Si were observed in cell culture test medium. The cell viability test did not shown significant differences between control alumina and its silica-modified counterpart.


Subject(s)
Aluminum Oxide , Dental Bonding , Aluminum Oxide/chemistry , Composite Resins/chemistry , Dental Bonding/methods , Materials Testing , Resin Cements/chemistry , Silicates/chemistry , Silicon Dioxide/chemistry , Surface Properties , Zirconium/chemistry
3.
ACS Omega ; 7(14): 11688-11695, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449986

ABSTRACT

Titanium dioxide (TiO2) is a commonly used electron selective layer in thin-film solar cells. The energy levels of TiO2 align well with those of most light-absorbing materials and facilitate extracting electrons while blocking the extraction of holes. In a device, this separates charge carriers and reduces recombination. In this study, we have evaluated the hole-blocking behavior of TiO2 compact layers using charge extraction by linearly increasing voltage in a metal-insulator-semiconductor structure (MIS-CELIV). This hole-blocking property was characterized as surface recombination velocity (S R) for holes at the interface between a semiconducting polymer and TiO2 layer. TiO2 layers of different thicknesses were prepared by sol-gel dip coating on two transparent conductive oxide substrates with different roughnesses. Surface coverage and film quality on both substrates were characterized using X-ray photoelectron spectroscopy and atomic force microscopy, along with its conductive imaging mode. Thicker TiO2 coatings provided better surface coverage, leading to reduced S R, unless the layers were otherwise defective. We found S R to be a more sensitive indicator of the overall film quality, as varying S R values were still observed among the films that looked similar in their characteristics via other methods.

4.
Dent Mater ; 37(9): 1350-1357, 2021 09.
Article in English | MEDLINE | ID: mdl-34175132

ABSTRACT

OBJECTIVE: Clinically used bioceramics have been characterized previously with different kinds of methods and comparison of results have proven to be difficult due to varieties of the material properties of interest. Therefore, in this study we compared clinically commonly used bioceramics of hydroxyapatite and carbonate apatite, two bioactive glasses 45S5 and S53P4, and alumina with respect of properties which according to the present knowledge are significant for bone biology. METHODS: Physicochemical properties of the materials were characterized by various methods. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) was used to analyze the material vibrational features. X-ray Power Diffraction (XRD) was used to characterize the material crystal structure and scanning electron microscopy-energy-dispersive x-ray analysis (SEM-EDXA) was used to evaluate the morphology and size of the materials and to calculate their oxide content. The dissolution behavior of the materials, ion release and pH changes in Tris buffer in a continuous flow-through reaction for 24-hours were determined. The change of the surface of the bioactive glasses by interfacial reaction during the Tris immersion was examined and the thickness of the surface reaction layer of the materials was studied. RESULTS: SEM examination showed that the particle morphology of BG 45S5, BG S53P4 and alumina particle's surface was smooth. The surface of HAP was porous, but also CAP showed some surface porosity. An increase in the pH of the immersion solution was observed especially for BG 45S5 and BG S53P4. HAP, CAP and alumina caused only a minor increase in pH. BGs 45S5 and S53P4 showed a rapid initial release of sodium and calcium ions, followed by the release of silicon species. Minor release of sodium ions was registered for HAP, CAP and alumina. Calcium ion release was low but constant over the experimental time while only a minor initial dissolution was measured for HAP. SIGNIFICANCE: The in vitro study showed differences in the materials' properties, which are considered to be important for biological suitability and in clinical applications, such as materials tomography, ion release and pH changes.


Subject(s)
Biocompatible Materials , Ceramics , Durapatite , Glass , Porosity , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Small ; 17(19): e2100101, 2021 May.
Article in English | MEDLINE | ID: mdl-33792184

ABSTRACT

The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn2+ ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs3 Bi2 I9 NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs3 BiI6 product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.

6.
Angew Chem Int Ed Engl ; 59(49): 22117-22125, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32816348

ABSTRACT

Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge2+ in stabilizing Sn2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.

7.
Nanomaterials (Basel) ; 10(1)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968629

ABSTRACT

The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance.

8.
J Coll Physicians Surg Pak ; 28(3): S35-S36, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29482700

ABSTRACT

Elizabethkingia (E.) meningosepticais a ubiquitous gram-negative bacillus belonging to the genus Chryseobacteriumand has been reported to cause nosocomial infections in both the immunocompromised and immunocompetent patients. E. meningoseptica can colonize the biliary tree after endoscopic procedures; and cholangitis, caused by this organism, is associated with a favorable prognosis. Here, we report a fatal case of cholangitis secondary to E. meningoseptica that developed following biliary stent placement. This case suggests that E. meningoseptica can be a cause of potentially fatal biliary tract infections in patients who undergo biliary tract endoscopic procedures. Clinicians must not disregard this organism as a contaminant (or colonizer) as a delay in diagnosis and treatment can lead to a fatal outcome, as seen in this case.


Subject(s)
Biliary Tract Surgical Procedures/adverse effects , Biliary Tract/physiopathology , Cholangiopancreatography, Endoscopic Retrograde/methods , Chryseobacterium/isolation & purification , Flavobacteriaceae Infections/diagnosis , Stents , Aged , Cholangitis/therapy , Drainage , Drug Resistance, Multiple, Bacterial , Fatal Outcome , Female , Humans
9.
Biosens Bioelectron ; 65: 62-70, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25461139

ABSTRACT

Breast cancer represents a significant health problem because of its high prevalence. Tests like mammography, which are used abundantly for the detection of breast cancer, suffer from serious limitations. Mammography correctly detects malignancy about 80-90% of the times, failing in places when (1) the tumor is small at early stage, (2) breast tissue is dense or (3) in women of less than 40 years. Serum-based detection of biomarkers involves risk of disease transfer, along with other concerns. These techniques compromise in the early detection of breast cancer. Early detection of breast cancer is a crucial factor to enhance the survival rate of patient. Development of regular screening tests for early diagnosis of breast cancer is a challenge. This review highlights the design of a handy and household biosensor device aimed for self-screening and early diagnosis of breast cancer. The design makes use of salivary autoantibodies for specificity to develop a noninvasive procedure, breast cancer specific biomarkers for precision for the development of device, and biosensor technology for sensitivity to screen the early cases of breast cancer more efficiently.


Subject(s)
Autoantibodies/analysis , Biosensing Techniques/methods , Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Quartz Crystal Microbalance Techniques/methods , Saliva/immunology , Vacuolar Proton-Translocating ATPases/immunology , Animals , Autoantibodies/immunology , Biosensing Techniques/instrumentation , Breast/immunology , Breast/pathology , Breast Neoplasms/immunology , Female , Humans , Quartz Crystal Microbalance Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...