Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(48): e202213416, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36198654

ABSTRACT

Constructing stable electrode/electrolyte interphase with fast interfacial kinetics is vital for fast-charging batteries. Herein, we investigate the interphase that forms between a high-voltage Na3 V2 (PO4 )2 F3 cathode and the electrolytes consisting of 3.0, 1.0, or 0.3 M NaClO4 in an organic carbonate solvent (47.5 : 47.5 : 5 mixture of EC: PC: FEC) during charging up to 4.5 V at 55 °C. It is found that a higher anion/solvent ratio in electrolyte solvation structure induces anion-dominated interphase containing more inorganic species and more anion derivatives (Cx ClOy ), which leads to a larger interfacial Na+ transport resistance and more unfavorable gas evolution. In comparison, a low anion/solvent ratio derives stable anion-tuned interphase that enables better interfacial kinetics and cycle ability. Importantly, the performance of a failed cathode is restored by triggering the decomposition of Cx ClOy species. This work elucidates the role of tuning interphase in fast-charging batteries.

2.
ACS Nano ; 14(10): 13765-13774, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33025784

ABSTRACT

Sluggish kinetics and limited reversible capacity present two major challenges for layered titanates to achieve satisfactory sodium-ion storage performance at subzero-temperatures (subzero-T). To facilitate sodiation dynamics and improve reversible capacity, we proposed an additive-free anode with Sn(II) located between layers. Sn-5s in interlayer-confining Sn(II), which has a larger negative charge, will hybridize with O-2p to trigger charge redistribution, thereby enhancing electronic conductivity. H-titanates with an open framework are designed to stabilize Sn(II) and restrain subsequent volume expansion, which could potentially surpass the capacity limitation of titanate-based materials via a joint alloying-intercalation reaction with high reversibility. Moreover, the generation of conductive Na14Sn4 and the expansion of interlayer spacing resulting from the interlayered alloying reaction are beneficial for charge transfer. These effects synergistically endow the modified sample with a considerably lower activation energy and a 3-fold increase in diffusion. Consequently, the designed anode delivers excellent subzero-T adaptability when compared to the unmodified sample, maintaining capacity retention of 91% after 1200 cycles at -20 °C and 90% after 850 cycles at -30 °C.

3.
Small ; 14(17): e1704508, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29611299

ABSTRACT

It is challenging for flexible solid-state hybrid capacitors to achieve high-energy-high-power densities in both Li-ion and Na-ion systems, and the kinetics discrepancy between the sluggish faradaic anode and the rapid capacitive cathode is the most critical issue needs to be addressed. To improve Li-ion/Na-ion diffusion kinetics, flexible oxygen-deficient TiO2-x /CNT composite film with ultrafast electron/ion transport network is constructed as self-supported and light-weight anode for a quasi-solid-state hybrid capacitor. It is found that the designed porous yolk-shell structure endows large surface area and provides short diffusion length, the oxygen-deficient composite film can improve electrical conductivity, and enhance ion diffusion kinetic by introducing intercalation pseudocapacitance, therefore resulting in advance electrochemical properties. It exhibits high capacity, excellent rate performance, and long cycle life when utilized as self-supported anodes for Li-ion and Na-ion batteries. When assembled with activated carbon/carbon nanotube (AC/CNT) flexible cathode, using ion conducting gel polymer as the electrolyte, high energy densities of 104 and 109 Wh kg-1 are achieved at 250 W kg-1 in quasi-solid-state Li-ion and Na-ion capacitors (LICs and SICs), respectively. Still, energy densities of 32 and 36 Wh kg-1 can be maintained at high power densities of 5000 W kg-1 in LICs and SICs.

SELECTION OF CITATIONS
SEARCH DETAIL
...