Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 29(3): 598-605, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25151957

ABSTRACT

Prospective identification of patients with chronic lymphocytic leukemia (CLL) destined to progress would greatly facilitate their clinical management. Recently, whole-genome DNA methylation analyses identified three clinicobiologic CLL subgroups with an epigenetic signature related to different normal B-cell counterparts. Here, we developed a clinically applicable method to identify these subgroups and to study their clinical relevance. Using a support vector machine approach, we built a prediction model using five epigenetic biomarkers that was able to classify CLL patients accurately into the three subgroups, namely naive B-cell-like, intermediate and memory B-cell-like CLL. DNA methylation was quantified by highly reproducible bisulfite pyrosequencing assays in two independent CLL series. In the initial series (n=211), the three subgroups showed differential levels of IGHV (immunoglobulin heavy-chain locus) mutation (P<0.001) and VH usage (P<0.03), as well as different clinical features and outcome in terms of time to first treatment (TTT) and overall survival (P<0.001). A multivariate Cox model showed that epigenetic classification was the strongest predictor of TTT (P<0.001) along with Binet stage (P<0.001). These findings were corroborated in a validation series (n=97). In this study, we developed a simple and robust method using epigenetic biomarkers to categorize CLLs into three subgroups with different clinicobiologic features and outcome.


Subject(s)
B-Lymphocytes/metabolism , Biomarkers, Tumor/genetics , Epigenesis, Genetic , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , B-Lymphocytes/classification , B-Lymphocytes/pathology , DNA Methylation , Disease Progression , Female , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/classification , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Proportional Hazards Models , Support Vector Machine , Survival Analysis , Time-to-Treatment , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...