Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 837: 155777, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35545164

ABSTRACT

Implementation of resource recovery technologies is becoming increasingly important, as humans are exhausting the world's natural resources. Recovering nutrients and water from wastewater treatment systems will play an important role in changing the current trends towards a circular economy. However, guidance is still needed to determine the most appropriate way to do this. In this study two decision-support tools, sanitation planning software (Santiago) and life cycle assessment (LCA), were applied to identify appropriate technologies and their environmental impacts. As a case study, current and alternative scenarios for a wastewater treatment plant (WWTP) in Campo Grande, west-central Brazil, were used. Among 12 scenarios provided by Santiago for efficient nutrient recovery, eight were selected for further assessment. The current WWTP system (UASB reactors) resulted in the highest negative impacts in two of nine assessment categories (freshwater and marine eutrophication), due to nutrient discharge to water. A source separation scenario with urine stored in a urine bank and co-composting of feces showed best overall performance. Electricity consumption played a crucial role for impacts in several categories, while water consumption was not significantly affected by choice of toilet. One Santiago scenario matched the most appropriate scenario with the best environmental performance, but the other seven scenarios were not as beneficial, indicating a need for some adjustments in the software. These results highlight the importance of performing LCA to compare alternative scenarios, even when using a tool designed to identify locally appropriate technologies. The results also indicate that the current wastewater treatment system has reasonable environmental performance, but could be improved if measures were taken to recover energy and reuse water.


Subject(s)
Waste Disposal, Fluid , Wastewater , Animals , Brazil , Humans , Life Cycle Stages , Sanitation , Software , Waste Disposal, Fluid/methods , Wastewater/analysis , Water
2.
Water Sci Technol ; 83(3): 501-514, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33600357

ABSTRACT

In its 30 years of existence, there are still many improvement possibilities in studies performing the life cycle assessment (LCA) of wastewater treatment plants (WWTPs). Hence, this paper aims to start a guideline development for LCA of urban WWTPs based on the information available in the scientific literature on the topic. The authors used the ProKnow-C systematic review methodology for paper selection and 111 studies were analyzed. The most significant points that can be improved are caused by missing essential information (e.g. functional unity and input data). Other important methodological aspects are covered: allocation process, functional unit choice, sensitivity analysis, and important fluxes to be considered. Many opportunities within the LCA of WWTPs were identified, such as optimization of WWTP operational aspects and resource recovery. Furthermore, LCA should be combined with other methodologies such as big data, data envelopment analysis, life cycle cost assessment, and social life cycle assessment. To achieve this potential, it is clear that the scientific and technical community needs to converge on a new protocol to ensure that LCA application becomes more reliable and transparent.


Subject(s)
Environment , Water Purification , Animals , Life Cycle Stages
3.
Sci Total Environ ; 713: 136145, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31962240

ABSTRACT

This manuscript aimed to identify the energy demand, and environmental aspects and impacts of crop fertilisation with human urine when compared to using mineral fertilisers. The Material Flow Analysis and Life Cycle Assessment methods were adopted covering the options from "cradle to grave". The fertilisation with human urine included the collection, storage, transportation, application and field emissions, while the fertilisation with mineral fertilisers included primary production of fertilisers, transportation, application and field emissions. The reference flows were based on the fertilisation of 1 ha of maize with 225 kg of nitrogen, 29 kg of phosphorus and 48 kg of potassium oxide. We analysed the environmental aspects such as nitrogen and phosphorus mass balance, energy demand and water depletion, as well as environmental impacts such as global warming, human toxicity, photochemical ozone formation, acidification, eutrophication, freshwater ecotoxicity, water scarcity and resource depletion. The agricultural fertilisation with full volume of human urine closer to the source presented smaller energy demand and environmental impact indicator values when compared to solid mineral fertiliser, despite the uncertainties. The fertilisation with human urine was more advantageous with transportation distances up to 134 km (energy demand) and 84 km (environmental categories) by truck compared to 1841 km of mineral fertiliser. Ammonia volatilisation control was key to reduce acidification and eutrophication indicator values. When considering additional gains such as the reduction of water demand and wastewater generation from a waterless collection of human urine, the indicator values of environmental aspects and impacts of fertilisation with human urine were smaller than those with mineral fertiliser and reached a break-even point of 193 km (energy demand) and 185 km (environmental categories). The nutrient cycling through resource-based sanitation offers an opportunity to expand sanitation access with smaller environmental impacts and more efficient water-energy-nutrient nexus.


Subject(s)
Fertilizers/analysis , Brazil , Humans , Nutrients , Wastewater , Water
4.
Water Sci Technol ; 74(1): 246-55, 2016.
Article in English | MEDLINE | ID: mdl-27387003

ABSTRACT

Chitosan was chosen as an alternative primary coagulant in a complementary coagulation-flocculation treatment of sanitary landfill leachate with the aim of removing recalcitrant organic matter. In order to optimize the process conditions, central composite design and response surface methodology were applied. To evaluate the performance of the process using chitosan, we also carried out tests with aluminium sulphate (Al(2) (SO(4))(3).14 H(2)O) as coagulant. In addition, acute toxicity tests were carried using the duckweed Lemna minor and the guppy fish Poecilia reticulata as test organisms. The analytic hierarchy process was employed for selecting the most appropriate coagulant. Mean values of true colour removal efficiency of 80% and turbidity removal efficiency of 91.4% were reached at chitosan dosages of 960 mg L(-1) at pH 8.5. The acute toxicity tests showed that organisms were sensitive to all samples, mainly after coagulation-flocculation using chitosan. CE(50) for L. minor was not determined because there was no inhibition of the average growth rate and biomass production; LC(50) for P. reticulata was 23% (v v(-1)). Multi-criteria analysis showed that alum was the most appropriate coagulant. Therefore, chitosan as primary coagulant was not considered to be a viable alternative in the post-treatment of landfill leachate.


Subject(s)
Chitosan/chemistry , Coagulants/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/chemistry , Alum Compounds/chemistry , Environmental Restoration and Remediation/instrumentation , Flocculation , Waste Disposal Facilities
5.
J Environ Manage ; 177: 119-28, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27088208

ABSTRACT

This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified.


Subject(s)
Carbon/metabolism , Models, Theoretical , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Computer Simulation , Denitrification , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Methane/biosynthesis , Nitrates/chemistry , Nitrates/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry
6.
Eng. sanit. ambient ; 16(4): 403-410, out.-dez. 2011. ilus, tab
Article in Portuguese | LILACS | ID: lil-614705

ABSTRACT

O presente artigo objetivou avaliar a aplicação da operação de stripping como pré-tratamento de um lixiviado de aterro sanitário visando à redução da carga de amônia afluente a um sistema biológico de tratamento, bem como, a utilização do processo de coagulação-floculação-sedimentação para a remoção da matéria orgânica recalcitrante de um lixiviado de aterro pré-tratado em um sistema de lodo ativado. As taxas de remoção de nitrogênio amoniacal variaram entre 3,5 e 3,6 mg N-NH3.L-1.h-1 para o sistema de stripping composto por um reator submetido à agitação mecânica e entre 3,2 e 3,3 mg N-NH3.L-1.h-1 para o reator submetido à aeração com bolhas grossas. Quanto ao pós-tratamento, os resultados obtidos indicaram que são requeridas dosagens acima de 400 mg Fe+3.L-1 e 400 mg Al+3.L-1, para a obtenção de eficiências de remoção de matéria orgânica recalcitrante superiores a 90 por cento.


The aim of this article was evaluate the implementation of the ammonia stripping as a pretreatment for landfill leachate and the use of the coagulation-flocculation-sedimentation process for the removal of refractory organic compounds present in a landfill leachate pretreated in an activated sludge system. The rates of ammonia nitrogen removal ranged between 3.5 and 3.6 mg NH3-N.L-1.h-1in a lab scale reactor (working volume of 20 L) equipped with a mechanical stirrer and 3.2 and 3.3 mg NH3-N.L-1.h-1in a lab scale aerated column (working volume of 10 L). It was possible to achieve removals above 90 percent of refractory organic compounds (measured as apparent color) applied coagulant dosage about 400 mg Fe+3.L-1 and 400 mg Al+3.L-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...