Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33861078

ABSTRACT

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

2.
Inorg Chem ; 59(8): 5447-5455, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32255645

ABSTRACT

A series of luminescent phenoxo-bridged dinuclear TbIII complexes with tripodal ligands, 2,2'-[[(2-pyridinylmethyl)imino]di(methylene)]-bis(4-R-phenol), where R = CH3 (LCH3) (I), Cl (LCl) (II), CH3O (LCH3O) (III), COOCH3 (LCOOCH3) (IV), were prepared to probe the effect of para-substitution on the phenol ring of the ligand on the TbIII luminescence. For these TbIII complexes a complete suppression of the ligand-centered fluorescence is observed, which demonstrates an efficient ligand-to-metal energy transfer. Complex IV was found to be the one that shows the greater intensity of the emission at room temperature. The obtained quantum yields follow the trend IV > II ≫ I > III. The quantum yield for II and IV is approximately five times greater than those obtained for I and III, indicating that the LCl and LCOOCH3 are better sensitizers of the TbIII ions. These results were rationalized in terms of the variation of the energy gap between the triplet level (T1) of the ligand and the emissive 5D4 level of TbIII, due to the electron-acceptor or electron-donor properties of the substituents. The τav values are in the millisecond range for all the studied complexes and resulted independent of temperature. The Commission International d'Eclairage coordinates (CIE) for all complexes are in the green color region, being insensitive to the variation of temperature. Moreover, the color purity (CP) is ca. 90% for all complexes, being ca. 100% for IV. Thus, the introduction of electron-acceptor substituents on the ligand permitted us to improve the luminescent properties of the TbIII complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...