Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Biomech ; 16(1): 13-22, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27241763

ABSTRACT

This study aimed (1) to profile the plantar loading characteristics when performing the basketball lay-up in a realistic setting and (2) to determine the number of trials necessary to establish a stable mean for plantar loading variables during the lay-up. Thirteen university male basketball players [age: 23.0 (1.4) years, height: 1.75 (0.05) m, mass: 68.4 (8.6) kg] performed ten successful basketball lay-ups from a stationary position. Plantar loading variables were recorded using the Novel Pedar-X in-shoe system. Loading variables including peak force, peak pressure, and pressure-time integral were extracted from eight foot regions. Performance stability of plantar loading variables during the take-off and landing steps were assessed using the sequential averaging technique and intra-class correlation coefficient (ICC). High plantar loadings were experienced at the heel during the take-off steps, and both the heel and forefoot regions upon landing. The sequential estimation technique revealed a five-eight trial range to achieve a stable mean across all plantar loading variables, whereas ICC analysis was insensitive to inter-trial differences of repeated lay-up performances. Future studies and performance evaluation protocols on plantar loading during basketball lay-ups should include at least eight trials to ensure that the measurements obtained are sufficiently stable.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Foot/physiology , Biomechanical Phenomena , Humans , Male , Pressure , Young Adult
2.
Cytoskeleton (Hoboken) ; 72(12): 633-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26616106

ABSTRACT

Ciliary movements in protozoa exhibit metachronal wave-like coordination, in which a constant phase difference is maintained between adjacent cilia. It is at present generally thought that metachronal waves require hydrodynamic coupling between adjacent cilia and the extracellular fluid. To test this hypothesis, we aspirated a Paramecium cell using a micropipette which completely sealed the surface of the cell such that no fluid could pass through the micropipette. Thus, the anterior and the posterior regions of the cell were hydrodynamically decoupled. Nevertheless, we still observed that metachronal waves continued to propagate from the anterior to the posterior ends of the cell, suggesting that in addition to hydrodynamic coupling, there are other mechanisms that can also transmit the metachronal waves. Such transmission was also observed in computational modeling where the fluid was fully decoupled between two partitions of a beating ciliary array. We also imposed cyclic stretching on the surface of live Paramecium cells and found that metachronal waves persisted in the presence of cyclic stretching. This demonstrated that, in addition to hydrodynamic coupling, a compliant substrate can also play a critical role in mediating the propagation of metachronal waves.


Subject(s)
Cilia/ultrastructure , Flagella/ultrastructure , Paramecium/ultrastructure , Movement , Paramecium/cytology
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056301, 2011 May.
Article in English | MEDLINE | ID: mdl-21728641

ABSTRACT

Using numerical simulations, we study the separation of deformable bodies, such as capsules, vesicles, and cells, in deterministic lateral displacement devices, also known as bump arrays. These arrays comprise regular rows of obstacles such as micropillars whose arrangements are shifted between adjacent rows by a fixed amount. We show that, in addition to the zigzag and laterally displaced trajectories that have been observed experimentally, there exists a third type of trajectory which we call dispersive, characterized by seemingly random bumpings off the micropillars. These dispersive trajectories are observed only for large and rigid particles whose diameters are approximately more than half the gap size between micropillars and whose stiffness exceeds approximately 500 MPa. We then map out the regions in phase space, spanned by the row shift, row separation, particle diameter, and particle deformability, in which the different types of trajectories are expected. We also show that, in this phase space, it is possible to transition from zigzag to dispersive trajectories, bypassing lateral displacement. Experimentally, this is undesirable because it limits the ability of the device to sort particles according to size. Finally, we discuss how our numerical simulations may be of use in device prototyping and optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...