Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38901032

ABSTRACT

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

2.
Nat Commun ; 14(1): 8035, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052786

ABSTRACT

The strong coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials, with potential applications ranging from ultrasensitive all-optical switching to creating polariton condensates. Often, ubiquitous decoherence processes at ambient conditions limit these couplings to such short time scales that the quantum dynamics of the interacting system remains elusive. Prominent examples are strongly coupled exciton-plasmon systems, which, so far, have mostly been investigated by linear optical spectroscopy. Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array. We observe rich coherent Rabi oscillation dynamics reflecting a plasmon-driven coherent exciton population transfer over mesoscopic distances at room temperature. This opens up new opportunities to manipulate the coherent transport of matter excitations by coupling to vacuum fields.

3.
Nano Lett ; 23(12): 5528-5534, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37278447

ABSTRACT

We report the first observation of the coupling of strong optical near fields to wavepackets of free, 100 eV electrons with <50 fs temporal resolution in an ultrafast point-projection microscope. Optical near fields are created by excitation of a thin, nanometer-sized Yagi-Uda antenna, with 20 fs near-infrared laser pulses. Phase matching between electrons and near fields is achieved due to strong spatial confinement of the antenna near field. Energy-resolved projection images of the antenna are recorded in an optical pump-electron probe scheme. We show that the phase modulation of the electron by transverse-field components results in a transient electron deflection while longitudinal near-field components broaden the kinetic energy distribution. This low-energy electron near-field coupling is used here to characterize the chirp of the ultrafast electron wavepackets, acquired upon propagation from the electron emitter to the sample. Our results bring direct mapping of different vectorial components of highly localized optical near fields into reach.

4.
J Am Chem Soc ; 144(41): 19150-19162, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206456

ABSTRACT

Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.

5.
ACS Nano ; 16(3): 4693-4704, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35188735

ABSTRACT

Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...