Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Liver Int ; 41(5): 1020-1032, 2021 05.
Article in English | MEDLINE | ID: mdl-33548108

ABSTRACT

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Subject(s)
Hyperammonemia , Animals , Bile , Bile Ducts , Disease Models, Animal , Escherichia coli , Ligation , Rats
2.
Hepatology ; 71(5): 1546-1558, 2020 05.
Article in English | MEDLINE | ID: mdl-31512765

ABSTRACT

BACKGROUND AND AIMS: Acute hepatic porphyria comprises a group of rare genetic diseases caused by mutations in genes involved in heme biosynthesis. Patients can experience acute neurovisceral attacks, debilitating chronic symptoms, and long-term complications. There is a lack of multinational, prospective data characterizing the disease and current treatment practices in severely affected patients. APPROACH AND RESULTS: EXPLORE is a prospective, multinational, natural history study characterizing disease activity and clinical management in patients with acute hepatic porphyria who experience recurrent attacks. Eligible patients had a confirmed acute hepatic porphyria diagnosis and had experienced ≥3 attacks in the prior 12 months or were receiving prophylactic treatment. A total of 112 patients were enrolled and followed for at least 6 months. In the 12 months before the study, patients reported a median (range) of 6 (0-52) acute attacks, with 52 (46%) patients receiving hemin prophylaxis. Chronic symptoms were reported by 73 (65%) patients, with 52 (46%) patients experiencing these daily. During the study, 98 (88%) patients experienced a total of 483 attacks, 77% of which required treatment at a health care facility and/or hemin administration (median [range] annualized attack rate 2.0 [0.0-37.0]). Elevated levels of hepatic δ-aminolevulinic acid synthase 1 messenger ribonucleic acid levels, δ-aminolevulinic acid, and porphobilinogen compared with the upper limit of normal in healthy individuals were observed at baseline and increased further during attacks. Patients had impaired quality of life and increased health care utilization. CONCLUSIONS: Patients experienced attacks often requiring treatment in a health care facility and/or with hemin, as well as chronic symptoms that adversely influenced day-to-day functioning. In this patient group, the high disease burden and diminished quality of life highlight the need for novel therapies.


Subject(s)
Porphobilinogen Synthase/deficiency , Porphyrias, Hepatic/drug therapy , Porphyrias, Hepatic/physiopathology , Adult , Aged , Biomarkers/urine , Female , Humans , Male , Middle Aged , Porphobilinogen Synthase/urine , Porphyrias, Hepatic/urine , Prospective Studies , Recurrence , Young Adult
3.
N Engl J Med ; 380(6): 549-558, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30726693

ABSTRACT

BACKGROUND: Induction of delta aminolevulinic acid synthase 1 ( ALAS1) gene expression and accumulation of neurotoxic intermediates result in neurovisceral attacks and disease manifestations in patients with acute intermittent porphyria, a rare inherited disease of heme biosynthesis. Givosiran is an investigational RNA interference therapeutic agent that inhibits hepatic ALAS1 synthesis. METHODS: We conducted a phase 1 trial of givosiran in patients with acute intermittent porphyria. In part A of the trial, patients without recent porphyria attacks (i.e., no attacks in the 6 months before baseline) were randomly assigned to receive a single subcutaneous injection of one of five ascending doses of givosiran (0.035, 0.10, 0.35, 1.0, or 2.5 mg per kilogram of body weight) or placebo. In part B, patients without recent attacks were randomly assigned to receive once-monthly injections of one of two doses of givosiran (0.35 or 1.0 mg per kilogram) or placebo (total of two injections 28 days apart). In part C, patients who had recurrent attacks were randomly assigned to receive injections of one of two doses of givosiran (2.5 or 5.0 mg per kilogram) or placebo once monthly (total of four injections) or once quarterly (total of two injections) during a 12-week period, starting on day 0. Safety, pharmacokinetic, pharmacodynamic, and exploratory efficacy outcomes were evaluated. RESULTS: A total of 23 patients in parts A and B and 17 patients in part C underwent randomization. Common adverse events included nasopharyngitis, abdominal pain, and diarrhea. Serious adverse events occurred in 6 patients who received givosiran in parts A through C combined. In part C, all 6 patients who were assigned to receive once-monthly injections of givosiran had sustained reductions in ALAS1 messenger RNA (mRNA), delta aminolevulinic acid, and porphobilinogen levels to near normal. These reductions were associated with a 79% lower mean annualized attack rate than that observed with placebo (exploratory efficacy end point). CONCLUSIONS: Once-monthly injections of givosiran in patients who had recurrent porphyria attacks resulted in mainly low-grade adverse events, reductions in induced ALAS1 mRNA levels, nearly normalized levels of the neurotoxic intermediates delta aminolevulinic acid and porphobilinogen, and a lower attack rate than that observed with placebo. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02452372 .).


Subject(s)
5-Aminolevulinate Synthetase/antagonists & inhibitors , Amides/administration & dosage , Porphyria, Acute Intermittent/drug therapy , RNAi Therapeutics , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Acetylgalactosamine/analogs & derivatives , Adult , Amides/adverse effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Injections, Subcutaneous , Liver/metabolism , Male , Middle Aged , Molecular Targeted Therapy , Porphobilinogen/blood , Pyrrolidines , RNA, Messenger/metabolism , RNA, Messenger/urine
4.
Patient ; 11(5): 527-537, 2018 10.
Article in English | MEDLINE | ID: mdl-29915990

ABSTRACT

OBJECTIVE: Acute intermittent porphyria is a rare metabolic disorder that affects heme synthesis. Patients with acute intermittent porphyria may experience acute debilitating neurovisceral attacks that require frequent hospitalizations and negatively impact quality of life. Although clinical aspects of acute intermittent porphyria attacks have been documented, the experience of patients is not well known, particularly for those more severely affected patients who experience frequent attacks. The aim of the present study was to qualitatively characterize the experience of patients with acute intermittent porphyria who have frequent attacks, as well as the impact of the disease on daily living. METHODS: Patients with acute intermittent porphyria who experience frequent attacks were recruited and took part in 2-h qualitative one-on-one interviews with a semi-structured guide. Interviews were anonymized, transcribed, and coded. The inductive coding approach targeted textual data related to acute intermittent porphyria attack symptoms, chronic symptoms, and the impact of the disease. Saturation analysis was conducted to assess whether the research elicited an adequate account of patients' experiences. RESULTS: In total, 19 patients with acute intermittent porphyria were interviewed (mean age 40 years; 79% female). Eighteen patients (95%) experienced both attack and chronic symptoms. Patients described attacks as the onset of unmanageable symptoms that generally lasted 3-5 days requiring hospitalization and/or treatment. Pain, nausea, and vomiting were considered key attack symptoms; pain, nausea, fatigue, and aspects of neuropathy (e.g., tingling and numbness) were considered key chronic symptoms. CONCLUSIONS: In this study population of acute intermittent porphyria with frequent attacks, most patients had symptoms during and between attacks. In these patients, acute intermittent porphyria appears to have acute exacerbations as well as chronic day-to-day manifestations, and is not just intermittent as its name implies. As a result, patients reported limitations in their ability to function across multiple domains of their lives on a regular basis and not just during acute attacks.


Subject(s)
Chronic Disease/psychology , Patients/psychology , Porphyria, Acute Intermittent/physiopathology , Porphyria, Acute Intermittent/psychology , Quality of Life/psychology , Adult , Female , Humans , Male , Middle Aged , Young Adult
5.
Atherosclerosis ; 268: 196-206, 2018 01.
Article in English | MEDLINE | ID: mdl-29183623

ABSTRACT

BACKGROUND AND AIMS: Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. METHODS: We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RESULTS: RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1-/- carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. CONCLUSIONS: Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.


Subject(s)
Angiopoietin-like Proteins/metabolism , Cholesterol, LDL/blood , Liver/metabolism , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/deficiency , Angiopoietin-like Proteins/genetics , Animals , Apolipoprotein B-100/genetics , Apolipoprotein B-100/metabolism , Biomarkers/blood , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Down-Regulation , Gene Editing/methods , Hep G2 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Obesity/blood , Obesity/genetics , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA Interference , Receptors, LDL/deficiency , Triglycerides/blood
6.
J Am Soc Nephrol ; 28(2): 494-503, 2017 02.
Article in English | MEDLINE | ID: mdl-27432743

ABSTRACT

Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.


Subject(s)
Alcohol Oxidoreductases , Hyperoxaluria, Primary/enzymology , Hyperoxaluria, Primary/therapy , Oxalates/metabolism , RNAi Therapeutics , Alcohol Oxidoreductases/genetics , Animals , Disease Models, Animal , Gene Silencing , Liver/enzymology , Male , Mice , Primates , RNA, Messenger , Rats
7.
Biochim Biophys Acta ; 1862(2): 233-9, 2016 02.
Article in English | MEDLINE | ID: mdl-26655602

ABSTRACT

Excessive endogenous oxalate synthesis can result in calcium oxalate kidney stone formation and renal failure. Hydroxyproline catabolism in the liver and kidney contributes to endogenous oxalate production in mammals. To quantify this contribution we have infused Wt mice, Agxt KO mice deficient in liver alanine:glyoxylate aminotransferase, and Grhpr KO mice deficient in glyoxylate reductase, with (13)C5-hydroxyproline. The contribution of hydroxyproline metabolism to urinary oxalate excretion in Wt mice was 22±2%, 42±8% in Agxt KO mice, and 36%±9% in Grhpr KO mice. To determine if blocking steps in hydroxyproline and glycolate metabolism would decrease urinary oxalate excretion, mice were injected with siRNA targeting the liver enzymes glycolate oxidase and hydroxyproline dehydrogenase. These siRNAs decreased the expression of both enzymes and reduced urinary oxalate excretion in Agxt KO mice, when compared to mice infused with a luciferase control preparation. These results suggest that siRNA approaches could be useful for decreasing the oxalate burden on the kidney in individuals with Primary Hyperoxaluria.


Subject(s)
Alcohol Oxidoreductases/genetics , Hydroxyproline/metabolism , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Proline Oxidase/metabolism , RNAi Therapeutics , Alcohol Oxidoreductases/metabolism , Animals , Disease Models, Animal , Hyperoxaluria, Primary/metabolism , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oxalates/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNAi Therapeutics/methods
8.
Mol Ther Nucleic Acids ; 4: e263, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26528940

ABSTRACT

The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology.

9.
Nucleic Acids Res ; 43(16): 7984-8001, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26220182

ABSTRACT

Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types.


Subject(s)
RNA, Small Interfering/administration & dosage , Animals , Cells, Cultured , Cholesterol , Endosomes/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , HeLa Cells , Hepatocytes/metabolism , Humans , Lipids , Mice , Nanoparticles , RNA Interference , RNA, Small Interfering/metabolism , Small Molecule Libraries
10.
ACS Chem Biol ; 10(5): 1181-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25730476

ABSTRACT

Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.


Subject(s)
Acetylgalactosamine/metabolism , Gene Silencing , Hepatocytes/metabolism , Nucleosides/metabolism , RNA, Small Interfering/genetics , Animals , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism
11.
Chembiochem ; 16(6): 903-8, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25786782

ABSTRACT

We recently demonstrated that siRNAs conjugated to triantennary N-acetylgalactosamine (GalNAc) induce robust RNAi-mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non-nucleosidic linker, were developed to yield simplified trivalent GalNAc-conjugated oligonucleotides under solid-phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3'-end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Subject(s)
Acetylgalactosamine/chemistry , Drug Carriers/chemistry , Gene Silencing , Hepatocytes/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Animals , Mice , Prealbumin/deficiency , Prealbumin/genetics
12.
Proc Natl Acad Sci U S A ; 111(21): 7777-82, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821812

ABSTRACT

The acute hepatic porphyrias are inherited disorders of heme biosynthesis characterized by life-threatening acute neurovisceral attacks. Factors that induce the expression of hepatic 5-aminolevulinic acid synthase 1 (ALAS1) result in the accumulation of the neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which recent studies indicate are primarily responsible for the acute attacks. Current treatment of these attacks involves i.v. administration of hemin, but a faster-acting, more effective, and safer therapy is needed. Here, we describe preclinical studies of liver-directed small interfering RNAs (siRNAs) targeting Alas1 (Alas1-siRNAs) in a mouse model of acute intermittent porphyria, the most common acute hepatic porphyria. A single i.v. dose of Alas1-siRNA prevented the phenobarbital-induced biochemical acute attacks for approximately 2 wk. Injection of Alas1-siRNA during an induced acute attack significantly decreased plasma ALA and PBG levels within 8 h, more rapidly and effectively than a single hemin infusion. Alas1-siRNA was well tolerated and a therapeutic dose did not cause hepatic heme deficiency. These studies provide proof-of-concept for the clinical development of RNA interference therapy for the prevention and treatment of the acute attacks of the acute hepatic porphyrias.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Liver/metabolism , Porphyria, Acute Intermittent/prevention & control , RNA Interference/immunology , RNA, Small Interfering/pharmacology , 5-Aminolevulinate Synthetase/genetics , Analysis of Variance , Animals , Blotting, Western , Drug Evaluation, Preclinical , Electrophoresis, Polyacrylamide Gel , Female , Mice , Mice, Inbred C57BL , Particle Size , RNA Interference/drug effects , Real-Time Polymerase Chain Reaction
13.
Proc Natl Acad Sci U S A ; 111(11): 3955-60, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24516150

ABSTRACT

siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Subject(s)
Drug Delivery Systems/methods , Lipopeptides/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Apolipoproteins E/metabolism , Cryoelectron Microscopy , Gene Silencing , Hepatocytes/metabolism , Macaca fascicularis , Mice , RNA, Small Interfering/therapeutic use , Rats
14.
Mol Ther ; 21(8): 1570-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23799535

ABSTRACT

In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.


Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/administration & dosage , RNA, Small Interfering/genetics , Animals , Cell Line , Factor VII/genetics , Factor VII/metabolism , Gene Silencing , Genetic Therapy , Humans , Lipids/pharmacokinetics , Macaca fascicularis , Male , Mice , Nanoparticles/chemistry , Nanoparticles/toxicity , RNA Interference , RNA, Small Interfering/chemistry , Rats
15.
Nat Biotechnol ; 31(7): 653-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23792629

ABSTRACT

Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.


Subject(s)
Endocytosis/genetics , Lipids/administration & dosage , Metal Nanoparticles/administration & dosage , RNA, Small Interfering/administration & dosage , Carrier Proteins , Gene Silencing , Gene Transfer Techniques , Humans , Intracellular Signaling Peptides and Proteins , Lipids/chemistry , Lipids/genetics , Membrane Glycoproteins , Metal Nanoparticles/chemistry , Microscopy, Confocal , Niemann-Pick C1 Protein , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Nat Biotechnol ; 31(7): 638-46, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23792630

ABSTRACT

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1-2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


Subject(s)
Endocytosis/genetics , Gene Transfer Techniques , Lipids/genetics , RNA, Small Interfering/genetics , Animals , Gold/administration & dosage , Gold/chemistry , Green Fluorescent Proteins/antagonists & inhibitors , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Lipids/administration & dosage , Lipids/chemistry , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Microscopy, Electron , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry
17.
Adv Mater ; 25(10): 1449-54, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23280931

ABSTRACT

A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ∼70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.

18.
J Control Release ; 163(2): 125-9, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22921802

ABSTRACT

RNA interference is a promising strategy for the treatment of Huntington's disease (HD) as it can specifically decrease the expression of the mutant Huntingtin protein (Htt). However, siRNA does not cross the blood-brain barrier and therefore delivery to the brain is limited to direct CNS delivery. Non-invasive delivery of siRNA through the blood-brain barrier (BBB) would be a significant advantage for translating this therapy to HD patients. Focused ultrasound (FUS), combined with intravascular delivery of microbubble contrast agent, was used to locally and transiently disrupt the BBB in the right striatum of adult rats. 48h following treatment with siRNA, the right (treated) and the left (control) striatum were dissected and analyzed for Htt mRNA levels. We demonstrate that FUS can non-invasively deliver siRNA-Htt directly to the striatum leading to a significant reduction of Htt expression in a dose dependent manner. Furthermore, we show that reduction of Htt with siRNA-Htt was greater when the extent of BBB disruption was increased. This study demonstrates that siRNA treatment for knockdown of mutant Htt is feasible without the surgical intervention previously required for direct delivery to the brain.


Subject(s)
Basal Ganglia/metabolism , Nerve Tissue Proteins/genetics , RNA, Small Interfering/administration & dosage , Animals , Blood-Brain Barrier/metabolism , Gene Knockdown Techniques , Genetic Therapy/methods , Huntingtin Protein , Magnetic Resonance Imaging/methods , Mutation , Rats , Rats, Wistar , Sound
19.
Nat Nanotechnol ; 7(6): 389-93, 2012 Jun 03.
Article in English | MEDLINE | ID: mdl-22659608

ABSTRACT

Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ≈ 24.2 min) than the parent siRNA (t(1/2) ≈ 6 min).


Subject(s)
DNA , Drug Delivery Systems/methods , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Nanoparticles , Neoplasms, Experimental/drug therapy , RNA, Small Interfering , Animals , DNA/chemistry , DNA/genetics , DNA/pharmacology , Female , Folic Acid/chemistry , Folic Acid/pharmacology , Gene Expression Regulation, Neoplastic/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
20.
Blood ; 120(9): 1916-22, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22611156

ABSTRACT

Anemia linked to a relative deficiency of renal erythropoietin production is a significant cause of morbidity and medical expenditures in the developed world. Recombinant erythropoietin is expensive and has been linked to excess cardiovascular events. Moreover, some patients become refractory to erythropoietin because of increased production of factors such as hepcidin. During fetal life, the liver, rather than the kidney, is the major source of erythropoietin. In the present study, we show that it is feasible to reactivate hepatic erythropoietin production and suppress hepcidin levels using systemically delivered siRNAs targeting the EglN prolyl hydroxylases specifically in the liver, leading to improved RBC production in models of anemia caused by either renal insufficiency or chronic inflammation with enhanced hepcidin production.


Subject(s)
Erythropoietin/deficiency , Erythropoietin/genetics , Procollagen-Proline Dioxygenase/genetics , RNA, Small Interfering/genetics , Anemia/etiology , Anemia/genetics , Anemia/therapy , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Base Sequence , Cells, Cultured , Erythropoiesis/genetics , Erythropoietin/metabolism , Feasibility Studies , Female , Hepcidins , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases , Inflammation/complications , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Procollagen-Proline Dioxygenase/metabolism , RNA Interference , Renal Insufficiency/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...