Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(8): 4984-4991, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33709694

ABSTRACT

A contamination with the ubiquitous radioactive fission product 137Cs cannot be assigned per se to its source. We used environmental samples with varying contamination levels from various parts of the world to establish their characteristic 135Cs/137Cs isotope ratios and thereby allow their distinction. The samples included biological materials from Chernobyl and Fukushima, historic ashed human lung tissue from the 1960s from Austria, and trinitite from the Trinity Test Site, USA. After chemical separation and gas reaction shifts inside a triple quadrupole ICP mass spectrometer, characteristic 135Cs/137Cs isotope signatures (all as per March 11, 2011) were obtained for Fukushima- (∼0.35) and Chernobyl-derived (∼0.50) contaminations, in agreement with the literature for these contamination sources. Both signatures clearly distinguish from the characteristic high ratio (1.9 ± 0.2) for nuclear-weapon-produced radiocesium found in human lung tissue. Trinitite samples exhibited an unexpected, anomalous pattern by displaying a low (<0.4) and nonuniform 135Cs/137Cs ratio. This exemplifies a 137Cs-rich fractionation of the plume in a nuclear explosion, where 137Cs is a predominant species in the fireball. The onset of 135Cs was delayed because of the longer half-life of its parent nuclide 135Xe, causing a spatial separation of gaseous 135Xe from condensed 137Cs, which is the reason for the atypical 135Cs/137Cs fractionation in the fallout at the test site.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Austria , Cesium Radioisotopes/analysis , Humans , Japan , Soil Pollutants, Radioactive/analysis
2.
Environ Sci Technol ; 54(18): 11414-11423, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32835480

ABSTRACT

We conducted a comprehensive radiation hazard assessment of the Tokyo Olympic Games (Tokyo 2020, postponed to 2021). Our combined experimental and literature study focused on both external and internal exposure to ionizing radiation for athletes and visitors of the Games. The effective dose for a visit of 2 weeks ranges from 57 to 310 µSv (including flight dose). The main contributors to the dose are cosmic radiation during the flights (approximately 10-81%), inhalation of natural radon (approximately 9-47%), and external exposure (approximately 8-42%). In this complex exposure, anthropogenic radionuclides from the Fukushima nuclear accident (2011) always play a minor role and have not caused a significant increase of the radiological risk compared to pre-Fukushima Japan. Significantly elevated air dose rates were not measured at any of the Tokyo Olympic venues. The average air dose rates at the Tokyo 2020 sites were below the average air dose rates at the sites of previous Olympic Games. The level of radiological safety of foods and water is very high in Japan, even for athletes with increased water and caloric demands, respectively.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactive Hazard Release , Humans , Japan , Radiation Dosage , Tokyo
3.
Sci Total Environ ; 689: 451-456, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31279192

ABSTRACT

Following the Fukushima nuclear accident (2011), radionuclides mostly of volatile elements (e.g., 131I, 134,137Cs, 132Te) have been investigated frequently for their presence in the atmosphere, pedosphere, biosphere, and the Pacific Ocean. Smaller releases of radionuclides with intermediate volatility, (e.g., 90Sr), have been reported for soil. However, few reports have been published which targeted the contamination of surface (fresh) waters in Japan soon after the accident. In the present study, 10 surface water samples (collected on April 10, 2011) have been screened for their radionuclide content (3H, 90Sr, 129I, 134Cs, and 137Cs), revealing partly unusually high contamination levels. Especially high tritium levels (184 ±â€¯2 Bq·L-1; the highest levels ever reported in scientific literature after Fukushima) were found in a puddle water sample from close to the Fukushima Daiichi nuclear power plant. The ratios between paddy/puddle water from one location only a few meters apart vary around 1% for 134Cs, 12% for 129I (131I), and around 40% for both 3H and 90Sr. This illustrates the adsorption of radiocesium on natural minerals and radioiodine on organic substances (in the rice paddy), whereas the concentration differences of 3H and 90Sr between the two waters are mainly dilution driven.

SELECTION OF CITATIONS
SEARCH DETAIL
...