Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e53081, 2013.
Article in English | MEDLINE | ID: mdl-23308140

ABSTRACT

UNLABELLED: 3'-deoxy-3'-[(18)F]fluoro-L-thymidine (FLT) and 2'-deoxy-2'-[(18)F]fluoro-D-glucose (FDG) are used to visualize proliferative and metabolic activity of tumors. In this study we aimed at evaluating the prognostic value of FLT and FDG uptake measured by positron emission tomography (PET) in patients with metastatic non-small cell lung cancer (NSCLC) prior to systemic therapy with erlotinib. FLT and FDG maximum standardized uptake (SUVmax) values per patient were analyzed in 40 chemotherapy naive patients with advanced NSCLC (stage IV) before treatment with erlotinib. Prior therapy median SUVmax was 6.6 for FDG and 3.0 for FLT, respectively. In univariate analysis, patients with an FDG SUVmax <6.6 had a significantly better overall survival (16.3 months [95% confidence interval [CI] 7.1-25.4 months]) compared to patients with an FDG SUVmax ≥6.6 (3.1 months [95% CI 0.6-5.5 months]) (p<0.001, log rank). Similarly, low FLT uptake (SUVmax <3.0) was associated with significantly longer survival (10.3 months (0-23.3 months, 95% CI) compared to high FLT uptake (3.4 months (0-8.1 months, 95% CI) (p = 0.027). The independent prognostic value of baseline FDG uptake was demonstrated in multivariate analysis (p = 0.05, Cox regression). These data suggest that baseline SUVmax values for both FDG and FLT PET might be further developed as markers for prognostic stratification of patients in advanced NSCLC treated with tyrosine kinase inhibitors (TKI) directed against the epidermal growth factor receptor (EGFR). TRIAL REGISTRATION: Clinicaltrials.gov, Identifier: NCT00568841.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Dideoxynucleosides , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Adult , Aged , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Erlotinib Hydrochloride , Female , Genes, erbB-1 , Humans , Kaplan-Meier Estimate , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Positron-Emission Tomography , Prognosis
2.
PLoS One ; 6(5): e19601, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21573178

ABSTRACT

Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy 'Sanger' sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r(2) = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation.


Subject(s)
Benchmarking , DNA Mutational Analysis/methods , DNA Mutational Analysis/standards , Lung Neoplasms/genetics , Mutation/genetics , Adult , Aged , Base Sequence , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Exons/genetics , Female , Genome, Human/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Middle Aged , Molecular Sequence Data , Treatment Outcome
3.
J Clin Oncol ; 29(13): 1701-8, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21422426

ABSTRACT

PURPOSE: Positron emission tomography (PET) with both 2'-deoxy-2'-[(18)F]fluoro-D-glucose (FDG) and 3'-[(18)F]fluoro-3'-deoxy-L-thymidine (FLT) was evaluated with respect to the accuracy of early prediction of nonprogression following erlotinib therapy, independent from epidermal growth factor receptor (EGFR) mutational status, in patients with previously untreated advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: Thirty-four patients with untreated stage IV NSCLC were evaluated in this phase II trial. Changes in FDG and FLT uptake after 1 (early) and 6 (late) weeks of erlotinib treatment were compared with nonprogression measured by computed tomography after 6 weeks of treatment, progression-free survival (PFS), and overall survival (OS). RESULTS: Changes in FDG uptake after 1 week of therapy predicted nonprogression after 6 weeks of therapy with an area under the receiver operating characteristic curve of 0.75 (P = .02). Furthermore, patients with an early metabolic FDG response (cutoff value: 30% reduction in the peak standardized uptake value) had significantly longer PFS (hazard ratio [HR], 0.23; 95% CI, 0.09 to 0.59; P = .002) and OS (HR, 0.36; 95% CI, 0.13 to 0.96; P = .04). Early FLT response also predicted significantly longer PFS (HR, 0.31; 95% CI, 0.10 to 0.95; P = .04) but not OS and was not predictive for nonprogression after 6 weeks of therapy. CONCLUSION: Early FDG-PET predicts PFS, OS, and nonprogression after 6 weeks of therapy with erlotinib in unselected, previously untreated patients with advanced NSCLC independent from EGFR mutational status.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Dideoxynucleosides , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnosis , Positron-Emission Tomography/methods , Quinazolines/therapeutic use , Adult , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Disease-Free Survival , Erlotinib Hydrochloride , Female , Genes, erbB-1 , Humans , Lung Neoplasms/drug therapy , Male , Middle Aged , Mutation , Prognosis
4.
Cancer Discov ; 1(1): 78-89, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22328973

ABSTRACT

UNLABELLED: While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE: DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Mitogen/genetics , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Dasatinib , Discoidin Domain Receptors , Erlotinib Hydrochloride , Humans , Lung Neoplasms/enzymology , Mice , Mice, Nude , Mutation , NIH 3T3 Cells , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Quinazolines/pharmacology , Quinazolines/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use , src-Family Kinases/genetics
5.
Sci Transl Med ; 2(62): 62ra93, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21160078

ABSTRACT

Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1(V561M)), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , Animals , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line , Enzyme Inhibitors/therapeutic use , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/drug therapy , Male , Mice , Mice, Nude , Pyrimidines/therapeutic use , RNA Interference , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Xenograft Model Antitumor Assays
7.
Genes Dev ; 22(12): 1690-703, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18559483

ABSTRACT

Endoreplicating cells undergo multiple rounds of DNA replication leading to polyploidy or polyteny. Oscillation of Cyclin E (CycE)-dependent kinase activity is the main driving force in Drosophila endocycles. High levels of CycE-Cdk2 activity trigger S phase, while down-regulation of CycE-Cdk2 activity is crucial to allow licensing of replication origins. In mitotic cells relicensing in S phase is prevented by Geminin. Here we show that Geminin protein oscillates in endoreplicating salivary glands of Drosophila. Geminin levels are high in S phase, but drop once DNA replication has been completed. DNA licensing is coupled to mitosis through the action of the anaphase-promoting complex/cyclosome (APC/C). We demonstrate that, even though endoreplicating cells never enter mitosis, APC/C activity is required in endoreplicating cells to mediate Geminin oscillation. Down-regulation of APC/C activity results in stabilization of Geminin protein and blocks endocycle progression. Geminin is only abundant in cells with high CycE-Cdk2 activity, suggesting that APC/C-Fzr activity is periodically inhibited by CycE-Cdk2, to prevent relicensing in S-phase cells.


Subject(s)
Cell Cycle/physiology , DNA Replication Timing/physiology , DNA Replication/physiology , Ubiquitin-Protein Ligase Complexes/physiology , Anaphase-Promoting Complex-Cyclosome , Animals , Animals, Genetically Modified , Cdh1 Proteins , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Cells, Cultured , Cyclin E/physiology , Cyclin-Dependent Kinase 2/physiology , DNA Replication/genetics , DNA Replication Timing/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Geminin , Gene Expression Regulation , Mitosis/genetics , Models, Biological , Replication Origin/physiology , Salivary Glands/metabolism , Transfection
8.
EMBO Rep ; 7(12): 1266-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17099689

ABSTRACT

Rca1 (regulator of Cyclin A)/Emi (early mitotic inhibitor) proteins are essential inhibitors of the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, Rca1 is required during G2 to prevent premature cyclin degradation by the Fizzy-related (Fzr)-dependent APC/C activity. Here, we present a structure and function analysis of Rca1 showing that a carboxy-terminal fragment is sufficient for APC/C inhibition. Rca1/Emi proteins contain a conserved F-box and interact with components of the Skp-Cullin-F-box (SCF) complex. So far, no function has been ascribed to this domain. We find that the F-box of Rca1 is dispensable for APC/C-Fzr inhibition during G2. Nevertheless, we show that Rca1 has an additional function at the G1-S transition, which requires the F-box. Overexpression of Rca1 accelerates the G1-S transition in an F-box-dependent manner. Conversely, S-phase entry is delayed in cells in which endogenous Rca1 is replaced by a transgene lacking the F-box. We propose that Rca1 acts as an F-box protein in an as yet uncharacterized SCF complex, which promotes S-phase entry.


Subject(s)
Cell Cycle Proteins/genetics , Drosophila Proteins/genetics , Drosophila/embryology , F-Box Motifs/physiology , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Animals , Cell Cycle Proteins/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Eye/embryology , Eye/metabolism , S Phase , Ubiquitin-Protein Ligase Complexes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...