Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Stem Cells Dev ; 33(7-8): 149-152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445379

ABSTRACT

Historically hematopoietic stem cells are believed to be predominantly dormant but could be induced into active cell cycle under specific conditions. This review, coupled with years of research from our laboratory, challenges this belief by demonstrating a significant portion of hematopoietic stem cells are actively cycling rather than quiescent. This addresses a major heuristic error in the understanding of hematopoietic stem cells that has shaped this field for decades. By evaluating the cycle status of engraftable hematopoietic stem cells in whole unseparated bone marrow, we demonstrated that a significant portion of these cells are actively cycling, and further confirmed by tritiated thymidine suicide and bromodeoxyuridine labeling assays. Moreover, by analyzing both whole unseparated bone marrow and purified lineage-negative hematopoietic stem cells in murine models, our findings indicate that lineage-positive cells, usually discarded during purification, actually contain actively cycling stem cells. Taken together, our findings highlight that hematopoietic stem cells are characterized as actively cycling and expressing differentiation epitopes. This corrects a basic mistake in stem cell biology. Furthermore, these findings provide valuable insights for a better understanding of the actively cycling hematopoietic stem cells in the field of stem cell biology.


Subject(s)
Hematopoietic Stem Cells , Humans , Animals , Mice , Cell Division , Cell Cycle , Cell Differentiation
2.
Br J Haematol ; 200(6): 740-754, 2023 03.
Article in English | MEDLINE | ID: mdl-36354085

ABSTRACT

While the bone marrow (BM) microenvironment is significantly remodelled in acute myeloid leukaemia (AML), molecular insight into AML-specific alterations in the microenvironment has been historically limited by the analysis of liquid marrow aspirates rather than core biopsies that contain solid-phase BM stroma. We assessed the effect of anthracycline- and cytarabine-based induction chemotherapy on both haematopoietic and non-haematopoietic cells directly in core BM biopsies using RNA-seq and histological analysis. We compared matched human core BM biopsies at diagnosis and 2 weeks after cytarabine- and anthracycline-based induction therapy in responders (<5% blasts present after treatment) and non-responders (≥5% blasts present after treatment). Our data indicated enrichment in vimentin (VIM), platelet-derived growth factor receptor beta (PDGFRB) and Snail family transcriptional repressor 2 (SNAI2) transcripts in responders, consistent with the reactivation of the mesenchymal population in the BM stroma. Enrichment of osteoblast maturation-related transcripts of biglycan (BGN), osteopontin (SPP1) and osteonectin (SPARC) was observed in non-responders. To the best of our knowledge, this is the first report demonstrating distinct osteogenic and mesenchymal transcriptome profiles specific to AML response to induction chemotherapy assessed directly in core BM biopsies. Detailing treatment response-specific alterations in the BM stroma may inform optimised therapeutic strategies for AML.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Transcriptome , Leukemia, Myeloid, Acute/drug therapy , Cytarabine/therapeutic use , Bone Marrow Cells/pathology , Anthracyclines/therapeutic use , Biopsy , Tumor Microenvironment
3.
Leukemia ; 36(12): 2784-2792, 2022 12.
Article in English | MEDLINE | ID: mdl-36307485

ABSTRACT

Current dogma is that there exists a hematopoietic pluripotent stem cell, resident in the marrow, which is quiescent, but with tremendous proliferative and differentiative potential. Furthermore, the hematopoietic system is essentially hierarchical with progressive differentiation from the pluripotent stem cells to different classes of hematopoietic cells. However, results summarized here indicate that the marrow pluripotent hematopoietic stem cell is actively cycling and thus continually changing phenotype. As it progresses through cell cycle differentiation potential changes as illustrated by sequential changes in surface expression of B220 and GR-1 epitopes. Further data indicated that the potential of purified hematopoietic stem cells extends to multiple other non-hematopoietic cells. It appears that marrow stem cells will give rise to epithelial pulmonary cells at certain points in cell cycle. Thus, it appears that the marrow "hematopoietic" stem cell is also a stem cell for other non-hematopoietic tissues. These observations give rise to the concept of a universal stem cell. The marrow stem cell is not limited to hematopoiesis and its differentiation potential continually changes as it transits cell cycle. Thus, there is a universal stem cell in the marrow which alters its differentiation potential as it progresses through cell cycle. This potential is expressed when it resides in tissues compatible with its differentiation potential, at a particular point in cell cycle transit, or when it interacts with vesicles from that tissue.


Subject(s)
Bone Marrow Cells , Hematopoietic Stem Cells , Hematopoietic Stem Cells/metabolism , Hematopoiesis , Cell Differentiation , Cell Cycle
4.
Stem Cell Rev Rep ; 18(7): 2351-2364, 2022 10.
Article in English | MEDLINE | ID: mdl-35503199

ABSTRACT

Hematopoietic stem cells express differentiation markers B220 and Gr1 and are proliferative. We have shown that the expression of these entities changes with cell cycle passage. Overall, we conclude that primitive hematopoietic stem cells alter their differentiation potential with cell cycle progression. Murine derived long-term hematopoietic stem cells (LT-HSC) are cycling and thus always changing phenotype. Here we show that over one half of marrow LT-HSC are in the population expressing differentiation epitopes and that B220 and Gr-1 positive populations are replete with LT-HSC after a single FACS separation but if subjected to a second separation these cells no longer contain LT-HSC. However, with second separated cells there is a population appearing that is B220 negative and replete with cycling c-Kit, Sca-1 CD150 positive LT-HSC. There is a 3-4 h interval between the first and second B220 or GR-1 FACS separation during which the stem cells continue to cycle. Thus, the LT-HSC have lost B220 or GR-1 expression as the cells progress through cell cycle, although they have maintained the c-kit, Sca-1 and CD150 stem cells markers over this time interval. These data indicate that cycling stem cells express differentiation epitopes and alter their differentiation potential with cell cycle passage.


Subject(s)
Antigens, Differentiation , Hematopoietic Stem Cells , Animals , Cell Cycle , Cell Differentiation/genetics , Epitopes , Mice
5.
Cardiovasc Res ; 118(16): 3211-3224, 2022 12 29.
Article in English | MEDLINE | ID: mdl-35018410

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS: We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION: By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Familial Primary Pulmonary Hypertension , Hypoxia/complications , Pulmonary Artery , Disease Models, Animal
6.
Sci Rep ; 11(1): 8186, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854105

ABSTRACT

Traumatic brain injury (TBI) is of significant concern in the realm of high impact contact sports, including mixed martial arts (MMA). Extracellular vesicles (EVs) travel between the brain and oral cavity and may be isolated from salivary samples as a noninvasive biomarker of TBI. Salivary EVs may highlight acute neurocognitive or neuropathological changes, which may be particularly useful as a biomarker in high impact sports. Pre and post-fight samples of saliva were isolated from 8 MMA fighters and 7 from controls. Real-time PCR of salivary EVs was done using the TaqMan Human Inflammatory array. Gene expression profiles were compared pre-fight to post-fight as well as pre-fight to controls. Largest signals were noted for fighters sustaining a loss by technical knockout (higher impact mechanism of injury) or a full match culminating in referee decision (longer length of fight), while smaller signals were noted for fighters winning by joint or choke submission (lower impact mechanism as well as less time). A correlation was observed between absolute gene information signals and fight related markers of head injury severity. Gene expression was also significantly different in MMA fighters pre-fight compared to controls. Our findings suggest that salivary EVs as a potential biomarker in the acute period following head injury to identify injury severity and can help elucidate pathophysiological processes involved in TBI.


Subject(s)
Brain Injuries, Traumatic/diagnosis , Extracellular Vesicles/genetics , Gene Expression Profiling/methods , Martial Arts/injuries , Saliva/chemistry , Adult , Biomarkers/metabolism , Brain Injuries, Traumatic/genetics , Case-Control Studies , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Male , Young Adult
7.
FASEB J ; 35(1): e21106, 2021 01.
Article in English | MEDLINE | ID: mdl-33165997

ABSTRACT

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Subject(s)
Cell Proliferation , Intestinal Mucosa/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Sp7 Transcription Factor/metabolism , Stem Cells , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Mice , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 11/deficiency , Sp7 Transcription Factor/genetics
8.
Pulm Circ ; 11(4): 20458940211046137, 2021.
Article in English | MEDLINE | ID: mdl-34987768

ABSTRACT

RATIONALE: Mesenchymal stem cell extracellular vesicles (MSC EVs) reverse pulmonary hypertension, but little information is available regarding what dose is effective and how often it needs to be given. This study examined the effects of dose reduction and use of longer dosing intervals and the effect of hypoxic stress of MSC prior to EV collection. METHODS: Adult male rats with pulmonary hypertension induced by Sugen 5416 and three weeks of hypoxia (SuHx-pulmonary hypertension) were injected with MSC EV or phosphate buffered saline the day of removal from hypoxia using one of the following protocols: (1) Once daily for three days at doses of 0.2, 1, 5, 20, and 100 µg/kg, (2) Once weekly (100 µg/kg) for five weeks, (3) Once every other week (100 µg/kg) for 10 weeks, (4) Once daily (20 µg/kg) for three days using EV obtained from MSC exposed to 48 h of hypoxia (HxEV) or MSC kept in normoxic conditions (NxEV). MAIN RESULTS: MSC EV reversed increases in right ventricular systolic pressure (RVSP), right ventricular to left ventricle + septum weight (RV/LV+S), and muscularization index of pulmonary vessels ≤50 µm when given at doses of 20 or 100 µg/kg. RVSP, RV/LV+S, and muscularization index were significantly higher in SuHx-pulmonary hypertension rats treated once weekly with phosphate buffered saline for five weeks or every other week for 10 weeks than in normoxic controls, but not significantly increased in SuHx-pulmonary hypertension rats given MSC EV. Both NxEV and HxEV significantly reduced RVSP, RV/LV+S, and muscularization index, but no differences were seen between treatment groups. CONCLUSIONS: MSC EV are effective at reversing SuHx-pulmonary hypertension when given at lower doses and longer dosing intervals than previously reported. Hypoxic stress does not enhance the efficacy of MSC EV at reversing pulmonary hypertension. These findings support the feasibility of MSC EV as a long-term treatment for pulmonary hypertension.

9.
Aging (Albany NY) ; 12(24): 25939-25955, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33378745

ABSTRACT

Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) ensuring homeostasis of blood production and immune response throughout life. Sex differences in immunocompetence and mortality are well-documented in humans. However, whether HSPCs behave dimorphically between sexes during aging remains unknown. Here, we show that a significant expansion of BM-derived HSPCs occurs in the middle age of female but in the old age of male mice. We then show that a decline of HSPCs in male mice, as indicated by the expression levels of select hematopoietic genes, occurs much earlier in the aging process than that in female mice. Sex-mismatched heterochronic BM transplantations indicate that the middle-aged female BM microenvironment plays a pivotal role in sustaining hematopoietic gene expression during aging. Furthermore, a higher concentration of the pituitary sex hormone follicle-stimulating hormone (FSH) in the serum and a concomitant higher expression of its receptor on HSPCs in the middle-aged and old female mice than age-matched male mice, suggests that FSH may contribute to the sexual dimorphism in aging hematopoiesis. Our study reveals that HSPCs in the BM niches are possibly regulated in a sex-specific manner and influenced differently by sex hormones during aging hematopoiesis.


Subject(s)
Aging/physiology , Follicle Stimulating Hormone/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Receptors, FSH/metabolism , Sex Characteristics , Animals , Antigens, Ly/metabolism , Bone Marrow , Bone Marrow Transplantation , Cell Lineage , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Follicle Stimulating Hormone/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Hematopoiesis/physiology , Male , Membrane Proteins/metabolism , Mice , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, LH/genetics , Receptors, LH/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Stem Cell Niche
10.
Front Cell Dev Biol ; 8: 188, 2020.
Article in English | MEDLINE | ID: mdl-32266268

ABSTRACT

Limitations in the current therapeutic strategies for the prevention of progression of chronic kidney disease (CKD) to end stage renal disease has been a drawback to improving patient recovery. It is therefore imperative that a solution is found to alleviate this problem and improve the health and well-being of patients overall. Aristolochic acid (AA) induced nephropathy, a type of nephrotoxic CKD is characterised by cortical tubular injury, inflammation, leading to interstitial fibrosis. Extracellular vesicles derived from human bone marrow mesenchymal stem cells (MSC-EVs) display therapeutic properties in various disease models including kidney injury. In the current study, we intended to investigate the ability of MSC-EVs on ameliorating tubular injury and interstitial fibrosis in a mouse model of aristolochic acid nephropathy (AAN). The chronic model of AAN is comprised of an intraperitoneal injection of AA in NSG mice, followed by a three-day incubation period and then inoculation of MSC-EVs intravenously. This routine was performed on a weekly basis for four consecutive weeks, accompanied by the monitoring of body weight of all mice. Blood and tissue samples were collected post sacrifice. All animals administered with AA developed kidney injury and renal fibrosis. A gradual loss of body weight was observed, together with a deterioration in kidney function. Although no significant recovery was observed in weight loss following treatment with MSC-EVs, a significant reduction in: blood creatinine and blood urea nitrogen (BUN), tubular necrosis, and interstitial fibrosis was observed. In addition, infiltration of CD45 positive immune cells, fibroblasts, and pericytes which were elevated in the interstitium post AA induced injury, were also significantly reduced by MSC-EVs. Kidneys were also subjected to molecular analyses to evaluate the regulation of pro-fibrotic genes. MSC-EVs significantly reduced AA induction of the pro-fibrotic genes α-Sma, Tgfb1 and Col1a1. A downregulation in pro-fibrotic genes was also observed in fibroblasts activated by AA injured mTECs in vitro. Furthermore, meta-analyses of miRNAs downregulated by MSC-EVs, such as miR21, revealed the regulation of multiple pathways involved in kidney injury including fibrosis, inflammation, and apoptosis. These results therefore suggest that MSC-EVs could play a regenerative and anti-fibrotic role in AAN through the transfer of biologically active cargo that regulates the disease both at a protein and genetic level.

11.
J Cell Physiol ; 235(11): 8210-8223, 2020 11.
Article in English | MEDLINE | ID: mdl-31970782

ABSTRACT

The underlying mechanism of normal lung organogenesis is not well understood. An increasing number of studies are demonstrating that extracellular vesicles (EVs) play critical roles in organ development by delivering microRNAs (miRNA) to neighboring and distant cells. miRNAs are important for fetal lung growth; however, the role of miRNA-EVs (miRNAs packaged inside the EVs) during fetal lung development is unexplored. The aim of this study was to examine the expression of miRNA-EVs in MLE-12, a murine lung epithelial cell line subjected to mechanical stretch in vitro with the long-term goal to investigate their potential role in the fetal lung development. Both cyclic and continuous mechanical stretch regulate miRNA differentially in EVs released from MLE-12 and intracellularly, demonstrating that mechanical signals regulate the expression of miRNA-EVs in lung epithelial cells. These results provide a proof-of-concept for the potential role that miRNA-EVs could play in the development of fetal lung.


Subject(s)
Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Gene Expression Regulation, Developmental/physiology , Lung/embryology , MicroRNAs/metabolism , Animals , Cell Line , Mice , Stress, Mechanical
12.
Eur Respir J ; 55(3)2020 03.
Article in English | MEDLINE | ID: mdl-31949110

ABSTRACT

Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.


Subject(s)
Pulmonary Artery , Vascular Diseases , Catheters , Cells, Cultured , Endothelial Cells , Humans , Lung
14.
Neural Regen Res ; 15(4): 676-681, 2020 04.
Article in English | MEDLINE | ID: mdl-31638091

ABSTRACT

At present, there is no reliable biomarker for the diagnosis of traumatic brain injury (TBI). Studies have shown that extracellular vesicles released by damaged cells into biological fluids can be used as potential biomarkers for diagnosis of TBI and evaluation of TBI severity. We hypothesize that the genetic profile of salivary extracellular vesicles in patients with head trauma differs from that in uninjured subjects. Findings from this hypothesis would help investigate the severity of TBI. This study included 19 subjects, consisting of seven healthy controls who denied history of head trauma, six patients diagnosed with concussion injury from an outpatient concussion clinic, and six patients with TBI who received treatment in the emergency department within 24 hours after injury. Real-time PCR analysis of salivary extracellular vesicles in participants was performed using TaqMan Human Inflammation array. Gene expression analysis revealed nine upregulated genes in emergency department patients (LOX5, ANXA3, CASP1, IL2RG, ITGAM, ITGB2, LTA4H, MAPK14, and TNFRSF1A) and 13 upregulated genes in concussion clinic patients compared with healthy participants (ADRB1, ADRB2, BDKRB1, HRH1, HRH2, LTB4R2, LTB4R, PTAFR, CYSLTR1, CES1, KLK1, MC2R, and PTGER3). Each patient group had a unique profile. Comparison between groups showed that 15 inflammation-related genes had significant expression change. Our results indicate that inflammation biomarkers can be used for diagnosis of TBI and evaluation of disease severity. This study was approved by the Institutional Review Board on December 18, 2015 (approval No. 0078-12) and on June 9, 2016 (approval No. 4093-16).

15.
Am J Respir Cell Mol Biol ; 62(5): 577-587, 2020 05.
Article in English | MEDLINE | ID: mdl-31721618

ABSTRACT

Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.


Subject(s)
Extracellular Vesicles/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Hypoxia/complications , Indoles/adverse effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Pyrroles/adverse effects , Animals , Fibroblasts/metabolism , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Macrophage Activation , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth/pathology , Neovascularization, Physiologic , Rats, Sprague-Dawley , Vascular Remodeling , von Willebrand Factor/metabolism
16.
Int J Mol Sci ; 20(21)2019 Nov 02.
Article in English | MEDLINE | ID: mdl-31684046

ABSTRACT

We have previously shown that injury induced by irradiation to murine marrow can be partially or completely reversed by exposure to human or murine mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). Investigation of the biodistribution of EVs in vivo is essential for understanding EV biology. In this study, we evaluated the DiD lipid dye labeled MSC-EV biodistribution in mice under different conditions, including different MSC-EV doses and injection schedules, time post MSC-EV injection, and doses of radiation. DiD-labeled MSC-EVs appeared highest in the liver and spleen; lower in bone marrow of the tibia, femur, and spine; and were undetectable in the heart, kidney and lung, while a predominant EV accumulation was detected in the lung of mice infused with human lung fibroblast cell derived EVs. There was significantly increased MSC-EV accumulation in the spleen and bone marrow (tibia and femur) post radiation appearing with an increase of MSC-EV uptake by CD11b+ and F4/80+ cells, but not by B220 cells, compared to those organs from non-irradiated mice. We further demonstrated that increasing levels of irradiation caused a selective increase in vesicle homing to marrow. This accumulation of MSC-EVs at the site of injured bone marrow could be detected as early as 1 h after MSC- EV injection and was not significantly different between 2 and 24 h post MSC-EV injection. Our study indicates that irradiation damage to hematopoietic tissue in the spleen and marrow targets MSC-EVs to these tissues.


Subject(s)
Bone Marrow/metabolism , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Radiation Injuries/metabolism , Animals , Bone Marrow/pathology , Bone Marrow/radiation effects , Cells, Cultured , Coloring Agents/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Humans , Liver/metabolism , Male , Mesenchymal Stem Cells/chemistry , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Spleen/metabolism
18.
Stem Cell Res Ther ; 10(1): 241, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31395099

ABSTRACT

When studying purified hematopoietic stem cells, the urge for mechanisms and reductionist approaches appears to be overwhelming. The prime focus of the field has recently been on the study of highly purified hematopoietic stem cells using various lineage and stem cell-specific markers, all of which adequately and conveniently fit the established hierarchical stem cell model. This methodology is tainted with bias and has led to incomplete conclusions. Much of our own work has shown that the purified hematopoietic stem cell, which has been so heavily studied, is not representative of the total population of hematopoietic stem cells and that rather than functioning within a hierarchical model of expansion the true hematopoietic stem cell is one that is actively cycling through various differentiation potentials within a dynamic continuum. Additional work with increased emphasis on studying whole populations and direct mechanistic studies to these populations is needed. Furthermore, the most productive studies may well be mechanistic at the cellular or tissue levels. Lastly, the application of robust machine learning algorithms may provide insight into the dynamic variability and flux of stem cell fate and differentiation potential.


Subject(s)
Heuristics , Stem Cells/metabolism , Animals , Antigens, Ly/metabolism , Cell Lineage , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Proto-Oncogene Proteins c-kit/metabolism , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , Stem Cells/cytology
19.
Clin Lymphoma Myeloma Leuk ; 19(9): 593-597, 2019 09.
Article in English | MEDLINE | ID: mdl-31262666

ABSTRACT

BACKGROUND: Myelofibrosis (MF), a rare disorder characterized by bone marrow fibrosis, has been implicated as a cause of pulmonary hypertension (PH). To date, studies examining this association have not looked at the impact of PH on survival in MF. We examined the relationship between MF and PH by echocardiogram (echo) using a retrospective patient database and examined the influence of PH on overall survival. PATIENTS AND METHODS: In this single-center retrospective chart review, we identified 65 patients with biopsy-proven primary and secondary MF, 31 of whom underwent transthoracic echo. After accounting for chronic obstructive pulmonary disease and left-sided or valvular heart dysfunction, which excluded 6 patients, we identified 14 patients (56%) who had echo evidence of group 5 PH (ie, PH due to unclear or multifactorial mechanisms), 8 with primary MF and 6 with secondary MF. MF patients with PH trended toward being predominantly female, being older, and less often having constitutional symptoms compared to the non-PH cohort. RESULTS: There was no effect of the presence of PH on overall survival in the entire MF cohort or in any subgroup analyzed, including primary MF versus secondary MF and primary MF intermediate risk patients. CONCLUSION: Given the high prevalence of MF-associated PH, there may be a larger role for routine echo screening in MF patients. Further, the underlying association between PH and MF may signify an endothelial plasticity or increased telomerase activity as part of the pathogenesis of MF.


Subject(s)
Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Primary Myelofibrosis/complications , Primary Myelofibrosis/epidemiology , Aged , Aged, 80 and over , Biomarkers , Biopsy , Echocardiography , Epithelial-Mesenchymal Transition , Female , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/mortality , Male , Middle Aged , Prevalence , Primary Myelofibrosis/diagnosis , Prognosis , Retrospective Studies , Survival Analysis
20.
Int J Mol Sci ; 20(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091699

ABSTRACT

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.


Subject(s)
Acute Kidney Injury/therapy , Extracellular Vesicles/transplantation , Mesenchymal Stem Cell Transplantation/methods , MicroRNAs/genetics , RNAi Therapeutics/methods , Regeneration , Animals , Cells, Cultured , Extracellular Vesicles/genetics , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, SCID , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...