Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAGMA ; 37(2): 169-183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197908

ABSTRACT

OBJECTIVE: To assess the possible influence of third-order shim coils on the behavior of the gradient field and in gradient-magnet interactions at 7 T and above. MATERIALS AND METHODS: Gradient impulse response function measurements were performed at 5 sites spanning field strengths from 7 to 11.7 T, all of them sharing the same exact whole-body gradient coil design. Mechanical fixation and boundary conditions of the gradient coil were altered in several ways at one site to study the impact of mechanical coupling with the magnet on the field perturbations. Vibrations, power deposition in the He bath, and field dynamics were characterized at 11.7 T with the third-order shim coils connected and disconnected inside the Faraday cage. RESULTS: For the same whole-body gradient coil design, all measurements differed greatly based on the third-order shim coil configuration (connected or not). Vibrations and gradient transfer function peaks could be affected by a factor of 2 or more, depending on the resonances. Disconnecting the third-order shim coils at 11.7 T also suppressed almost completely power deposition peaks at some frequencies. DISCUSSION: Third-order shim coil configurations can have major impact in gradient-magnet interactions with consequences on potential hardware damage, magnet heating, and image quality going beyond EPI acquisitions.


Subject(s)
Magnetic Resonance Imaging , Magnets , Magnetic Resonance Imaging/methods
2.
MAGMA ; 36(2): 175-189, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715884

ABSTRACT

OBJECTIVES: The Iseult MRI is an actively shielded whole-body magnet providing a homogeneous and stable magnetic field of 11.7 T. After nearly 20 years of research and development, the magnet successfully reached its target field strength for the first time in 2019. This article reviews its commissioning status, the gradient-magnet interaction test results and first imaging experience. MATERIALS AND METHODS: Vibration, acoustics, power deposition in the He bath, and field monitoring measurements were carried out. Magnet safety system was tested against outer magnetic perturbations, and calibrated to define a safe operation of the gradient coil. First measurements using parallel transmission were also performed on an ex-vivo brain to mitigate the RF field inhomogeneity effect. RESULTS: Acoustics measurements show promising results with sound pressure levels slightly above the enforced limits only at certain frequency intervals. Vibrations of the gradient coil revealed a linear trend with the B0 field only in the worst case. Field monitoring revealed some resonances at some frequencies that are still under investigation. DISCUSSION: Gradient-magnet interaction tests at up to 11.7 T are concluded. The scanner is now kept permanently at field and the final calibrations are on-going to pave the road towards the first acquisitions on volunteers.


Subject(s)
Magnetic Resonance Imaging , Magnets , Humans , Magnetic Resonance Imaging/methods , Magnetic Fields , Magnetics , Whole Body Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...