Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 15(1): 21-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33100120

ABSTRACT

Dose-response by in vitro testing is only valid if the fraction of the particle dose that deposits onto adherent cells is known. Modeling tools such as the 'distorted grid' (DG) code are common practices to predict that fraction. As another challenge, workflow efficiency depends on parallelized sample preparation, for which freeze-thaw protocols have been explored earlier, but not their implications on dosimetry. Here we assess the sensitivity of the DG code toward freeze-thaw protocols and variations in user-defined parameters, including the estimation of particle-cell affinity and determination of agglomerate size, which we measure by DLS or AUC. We challenge the sensitivity by materials of varying composition, surface functionalization, and size (TiO2, CeO2, BaSO4, 2x Ag, 3x SiO2). We found that the average effective density is robust, but the dose predictions by different approaches varied typically 2-fold and up to 10-fold; this uncertainty translates directly into the uncertainty of no-effect-concentrations. The use of standardized dispersion protocols increases the uncertainty in doses. The choice of a measurement method and minor details of the particle size distribution strongly influence the modeled dosimetry. Uncertainty is high for very well dispersed nanomaterials; since then, the assumed affinity of particles to cells has a decisive influence. Against this background, the modulation of deposited dose by freeze-thaw protocols is a minor factor that can be controlled by aligning the protocols of sample preparation. However, even then, the uncertainty of deposited doses must be considered when comparing the in vitro toxicity of different nanomaterials.


Subject(s)
Nanostructures/chemistry , Silicon Dioxide/chemistry , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Freezing , Surface Properties
2.
Beilstein J Nanotechnol ; 11: 1556-1567, 2020.
Article in English | MEDLINE | ID: mdl-33134000

ABSTRACT

The application of nanoparticle in medicine is promising for the treatment of a wide variety of diseases. However, the slow progress in the field has resulted in relatively few therapies being translated into the clinic. Anisotropic synthetic protein nanoparticles (ASPNPs) show potential as a next-generation drug-delivery technology, due to their biocompatibility, biodegradability, and functionality. Even though ASPNPs have the potential to be used in a variety of applications, such as in the treatment of glioblastoma, there is currently no high-throughput technology for the processing of these particles. Insulator-based electrokinetics employ microfluidics devices that rely on electrokinetic principles to manipulate micro- and nanoparticles. These miniaturized devices can selectively trap and enrich nanoparticles based on their material characteristics, and subsequently release them, which allows for particle sorting and processing. In this study, we use insulator-based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium parameter (eE EEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs.

3.
Macromol Rapid Commun ; 41(23): e2000425, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32974989

ABSTRACT

Protein nanoparticles are a promising approach for nanotherapeutics, as proteins combine versatile chemical and biological function with controlled biodegradability. In this work, the development of an adaptable synthesis method is presented for synthetic protein nanoparticles (SPNPs) based on reactive electrojetting. In contrast to past work with electrohydrodynamic cojetting using inert polymers, the jetting solutions are comprised of proteins and chemically activated macromers, designed to react with each other during the processing step, to form insoluble nanogel particles. SPNPs made from a variety of different proteins, such as transferrin, insulin, or hemoglobin, are stable and uniform under physiological conditions and maintain monodisperse sizes of around 200 nm. SPNPs comprised of transferrin and a disulfide containing macromer are stimuli-responsive, and serve as markers of oxidative stress within HeLa cells. Beyond isotropic SPNPs, bicompartmental nanoparticles containing human serum albumin and transferrin in two distinct hemispheres are prepared via reactive electrojetting. This novel platform provides access to a novel class of versatile protein particles with nanoscale architectures that i) can be made from a variety of proteins and macromers, ii) have tunable biological responses, and iii) can be multicompartmental, a prerequisite for controlled release of multiple drugs.


Subject(s)
Nanoparticles , Polymers , HeLa Cells , Humans
4.
Article in English | MEDLINE | ID: mdl-32196991

ABSTRACT

Clinical translation of nanoparticle-based drug delivery systems is hindered by an array of challenges including poor circulation time and limited targeting. Novel approaches including designing multifunctional particles, cell-mediated delivery systems, and fabrications of protein-based nanoparticles have gained attention to provide new perspectives to current drug delivery obstacles in the interdisciplinary field of nanomedicine. Collectively, these nanoparticle devices are currently being investigated for applications spanning from drug delivery and cancer therapy to medical imaging and immunotherapy. Here, we review the current state of the field, highlight opportunities, identify challenges, and present the future directions of the next generation of multifunctional nanoparticle drug delivery platforms. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Multifunctional Nanoparticles/therapeutic use , Nanomedicine , Anisotropy , Clinical Trials as Topic , Humans , Nanoparticles/chemistry , Proteins/chemistry
5.
Biomed Mater ; 12(1): 015024, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211362

ABSTRACT

Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.


Subject(s)
Gelatin/chemistry , Induced Pluripotent Stem Cells/transplantation , Nanofibers/chemistry , Peripheral Vascular Diseases/therapy , Adipose Tissue/pathology , Animals , Biocompatible Materials/chemistry , Cells, Cultured , Disease Models, Animal , Extremities/blood supply , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Ischemia/pathology , Ischemia/physiopathology , Ischemia/therapy , Male , Materials Testing , Mice , Mice, Inbred BALB C , Muscle, Smooth, Vascular/pathology , Peripheral Vascular Diseases/pathology , Peripheral Vascular Diseases/physiopathology , Regeneration , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...