Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 9(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751710

ABSTRACT

Drug-decorated nanoparticles (DDNPs) have important medical applications. The current work combined Perturbation Theory with Machine Learning and Information Fusion (PTMLIF). Thus, PTMLIF models were proposed to predict the probability of nanoparticle-compound/drug complexes having antimalarial activity (against Plasmodium). The aim is to save experimental resources and time by using a virtual screening for DDNPs. The raw data was obtained by the fusion of experimental data for nanoparticles with compound chemical assays from the ChEMBL database. The inputs for the eight Machine Learning classifiers were transformed features of drugs/compounds and nanoparticles as perturbations of molecular descriptors in specific experimental conditions (experiment-centered features). The resulting dataset contains 107 input features and 249,992 examples. The best classification model was provided by Random Forest, with 27 selected features of drugs/compounds and nanoparticles in all experimental conditions considered. The high performance of the model was demonstrated by the mean Area Under the Receiver Operating Characteristics (AUC) in a test subset with a value of 0.9921 ± 0.000244 (10-fold cross-validation). The results demonstrated the power of information fusion of the experimental-centered features of drugs/compounds and nanoparticles for the prediction of nanoparticle-compound antimalarial activity. The scripts and dataset for this project are available in the open GitHub repository.

2.
J Proteome Res ; 17(3): 1258-1268, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29336158

ABSTRACT

The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of genes are transcribed from bidirectional promoters in humans, and many more are organized into larger clusters. This raises intriguing questions previously asked by different authors. We would like to add a few more questions in this context, related to gene orientation inversions. Does gene orientation (inversion) follow a random pattern? Is it relevant to biological activity somehow? We define a new kind of network coined as the gene orientation inversion network (GOIN). GOIN's complex network encodes short- and long-range patterns of inversion of the orientation of pairs of gene in the chromosome. We selected Plasmodium falciparum as a case of study due to the high relevance of this parasite to public health (causal agent of malaria). We constructed here for the first time all of the GOINs for the genome of this parasite. These networks have an average of 383 nodes (genes in one chromosome) and 1314 links (pairs of gene with inverse orientation). We calculated node centralities and other parameters of these networks. These numerical parameters were used to study different properties of gene inversion patterns, for example, distribution, local communities, similarity to Erdös-Rényi random networks, randomness, and so on. We find clues that seem to indicate that gene orientation inversion does not follow a random pattern. We noted that some gene communities in the GOINs tend to group genes encoding for RIFIN-related proteins in the proteome of the parasite. RIFIN-like proteins are a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Consequently, we used these centralities as input of machine learning (ML) models to predict the RIFIN-like activity of 5365 proteins in the proteome of Plasmodium sp. The best linear ML model found discriminates RIFIN-like from other proteins with sensitivity and specificity 70-80% in training and external validation series. All of these results may point to a possible biological relevance of gene orientation inversion not directly dependent on genetic sequence information. This work opens the gate to the use of GOINs as a tool for the study of the structure of chromosomes and the study of protein function in proteome research.


Subject(s)
Chromosomes/chemistry , Gene Regulatory Networks , Genes, Protozoan , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Proteome/genetics , Protozoan Proteins/genetics , Sequence Inversion , Erythrocytes/parasitology , Gene Expression Regulation , Humans , Machine Learning , Membrane Proteins/metabolism , Multigene Family , Plasmodium falciparum/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...