Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Med Phys Fitness ; 54(2): 129-38, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24509983

ABSTRACT

AIM: Different jumping strategies can be used during plyometric training. Understanding how manipulating variables such as the counter-movement, flexion amplitude, the drop and the load could influence neuromuscular adaptation would be beneficial for coaches and athletes. The purpose of this study was to analyze how these variations in the vertical jump influenced kinematic and kinetic parameters as measured by a force platform. METHODS: Ten male subjects performed, eight kinds of vertical jumps on a force platform: (1) squat jump (SJ); (2) shallow counter-movement jump (S-CMJ); (3) natural counter-movement jump (N-CMJ); (4) deep counter-movement jump (D-CMJ); (5) loaded (20kg) counter-movement jump (20-CMJ); (6) shallow drop jump (S-DJ); (7) deep drop jump (D-DJ); (8) six consecutive jump test (6CJ). Customised Labview software was used to calculate time, displacement, velocity, acceleration, force, power, impulse and stiffness. After statistical analysis, jumping variables were grouped to achieve specific training objectives. RESULTS: The mechanical parameters were largely influenced by the jump strategy, all the deep jumps produced superior jump heights and concentric velocities as compared to the shallow jumps. The exercises associated with greater power outputs were the S-DJ (5386±1095 W) and 6CJ (5795±1365 W) that involved short impulse durations and very high accelerations. The greatest values of muscle stiffness were not recorded during the highest vertical jumps, meaning that stiffness is not critical for jumping high. CONCLUSION: This study gives an overview of what is changing when we manipulate jumping variables and instructions given to the athletes. Plyometric exercises should be carefully selected according to the sport and specific individual needs.


Subject(s)
Athletic Performance/physiology , Movement/physiology , Plyometric Exercise , Adult , Biomechanical Phenomena , Humans , Male , Muscle, Skeletal/physiology , Software , Task Performance and Analysis
2.
J Sports Sci ; 19(2): 99-105, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11217015

ABSTRACT

The aim of this study was to determine the effects of external loading on power output during a squat jump on a force platform in athletes specializing in strength and power events (6 elite weight-lifters and 16 volleyball players) and in 20 sedentary individuals. Instantaneous power was computed from time-force curves during vertical jumps with and without an external load (0, 5 or 10 kg worn in a special vest). The jumps were performed from a squat position, without lower limb counter-movement or an arm swing. Peak instantaneous power corresponded to the highest value of instantaneous power during jumping. Average power throughout the push phase of the jump was also calculated. A two-way analysis of variance showed significant interactions between the load and group effects for peak instantaneous power (P< 0.01) and average power (P< 0.001). Peak instantaneous power decreased significantly in sedentary individuals when moderate external loads were added. The peak instantaneous power at 0 kg was greater than that at 5 and 10 kg in the sedentary individuals. In contrast, peak instantaneous power was independent of load in the strength and power athletes. Mean power at 0 kg was significantly lower than at 5 kg in the athletes; at 0 kg it was significantly higher than at 10 kg in the sedentary males and at 5 and 10 kg in the sedentary females. In all groups, the force corresponding to peak instantaneous power increased and the velocity corresponding to peak instantaneous power decreased with external loading. The present results suggest that the effects of external loading on peak instantaneous power are not significant in strength and power athletes provided that the loads do not prevent peak velocity from being higher than the velocity that is optimal for maximal power output.


Subject(s)
Energy Transfer/physiology , Muscle, Skeletal/physiology , Sports/physiology , Weight-Bearing/physiology , Adult , Analysis of Variance , Ergometry , Exercise Tolerance , Female , Humans , Life Style , Male , Reference Values , Sex Factors , Track and Field/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...