Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Math Optim ; 86(3): 44, 2022.
Article in English | MEDLINE | ID: mdl-36254121

ABSTRACT

In this paper, we consider a (control) optimization problem, which involves a stochastic dynamic. The model proposes selecting the best control function that keeps bounded a stochastic process over an interval of time with a high probability level. Here, the stochastic process is governed by a stochastic differential equation affected by a stochastic process. This setting becomes a chance-constrained control optimization problem, where the constraint is given by the probability level of infinitely many random inequalities. Since such a model is challenging, we discretize the dynamic and restrict the space of control functions to piecewise mappings. On the one hand, it transforms the infinite-dimensional optimization problem into a finite-dimensional one. On the other hand, it allows us to provide the well-posedness of the problem and approximation. Finally, the results are illustrated with numerical results, where classical model for the growth of a population are considered.

2.
Sci Rep ; 11(1): 13936, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34230549

ABSTRACT

We study the role of small-scale perturbations in the onset of avalanches in a rotating drum in the stick-slip regime. By vibrating the system along the axis of rotation with an amplitude orders of magnitude smaller than the particles' diameter, we found that the order parameter that properly describes the system is the kinetic energy. We also show that, for high enough frequencies, the onset of the avalanche is determined by the amplitude of the oscillation, contrary to previous studies that showed that either acceleration or velocity was the governing parameter. Finally, we present a theoretical model that explains the transition between the continuous and discrete avalanche regimes as a supercritical Hopf bifurcation.

3.
Theor Biol Med Model ; 12: 13, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26133367

ABSTRACT

One of the main challenges in cancer modelling is to improve the knowledge of tumor progression in areas related to tumor growth, tumor-induced angiogenesis and targeted therapies efficacy. For this purpose, incorporate the expertise from applied mathematicians, biologists and physicians is highly desirable. Despite the existence of a very wide range of models, involving many stages in cancer progression, few models have been proposed to take into account all relevant processes in tumor progression, in particular the effect of systemic treatments and angiogenesis. Composite biological experiments, both in vitro and in vivo, in addition with mathematical modelling can provide a better understanding of theses aspects. In this work we proposed that a rational experimental design associated with mathematical modelling could provide new insights into cancer progression. To accomplish this task, we reviewed mathematical models and cancer biology literature, describing in detail the basic principles of mathematical modelling. We also analyze how experimental data regarding tumor cells proliferation and angiogenesis in vitro may fit with mathematical modelling in order to reconstruct in vivo tumor evolution. Additionally, we explained the mathematical methodology in a comprehensible way in order to facilitate its future use by the scientific community.


Subject(s)
Neoplasms/blood supply , Neovascularization, Pathologic , Humans , Models, Biological
4.
Development ; 142(10): 1860-8, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25968317

ABSTRACT

Boundary formation in the developing neuroepithelium decides on the position and size of compartments in the adult nervous system. In this study, we start from the French Flag model proposed by Lewis Wolpert, in which boundaries are formed through the combination of morphogen diffusion and of thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell-autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Alan Turing, on the other hand, proposed a model whereby two morphogens that exhibit self-activation and reciprocal inhibition, and are uniformly distributed and diffuse at different rates lead to the formation of territories of unpredictable shapes and positions but with sharp boundaries (the 'leopard spots'). Here, we have combined the two models and compared the stability of boundaries when the hypothesis of local homeoprotein intercellular diffusion is, or is not, introduced in the equations. We find that the addition of homeoprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when other parameters are significantly modified. This novel Turing/Wolpert combined model has thus important theoretical consequences for our understanding of the role of the intercellular diffusion of homeoproteins in the developmental robustness of and the changes that take place in the course of evolution.


Subject(s)
Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Models, Theoretical , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...