Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Lett Appl Microbiol ; 64(6): 430-437, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28295422

ABSTRACT

The increase in the consumption of fresh produce has correlated with a rise in the number of reported foodborne illnesses. To identify potential risk factors associated with postharvest practices, the present study employed multilocus sequence typing (MLST) for the genotypic classification of Escherichia coli isolates recovered from three sources sampled at seven operational stages in a cantaloupe packinghouse in Northwestern Mexico. The MLST analysis results indicated that the E. coli isolates were classified into 18 different sequence types (ST), and 11 of these STs were found to be novel. ST-171 was the predominant type and was found in 19% (7/36) of the recovered isolates. Interestingly, the novel ST-827 was found to be significantly associated with isolates recovered from workers' hands, sampled during final postwash stages. Further phylogenetic analyses to examine the relatedness of the STs revealed genetic heterogeneity. Fourteen of the identified STs were assigned to known clonal groups, while the remaining four novel STs were distinct and did not cluster with any clonal group. The present study has provided the first evidence indicating that several sources from distinct operational stages in a cantaloupe packinghouse may contribute to a genotypic and phylogenetic diverse set of E. coli isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Packinghouses can be considered as a potential source of microbial contamination. Using multilocus sequence typing, this study identified a genotypic and phylogenetic diverse set of Escherichia coli isolates recovered from the surfaces of cantaloupes, workers' hands and processing equipment at a cantaloupe packinghouse. A total of 61% of the sequence types identified were novel, and a distinct sequence type, ST-827, was significantly associated with worker's hands, sampled during the final postwash operational stages in the packinghouse. These findings serve as a baseline to identify potential sources of microbial contamination at distinct operational stages in a cantaloupe packinghouse.


Subject(s)
Cucumis melo/microbiology , Escherichia coli/genetics , Food Contamination , Food Packaging , Genetic Variation , Bacterial Typing Techniques , Escherichia coli/isolation & purification , Genotype , Humans , Mexico , Multilocus Sequence Typing , Phylogeny
2.
Brain Res ; 923(1-2): 45-9, 2001 Dec 27.
Article in English | MEDLINE | ID: mdl-11743971

ABSTRACT

Although there is evidence that the thalamus plays a remarkable role in pain processing few in vivo studies on the thalamic neurochemical correlates of pain have been done. In the present experiments a combination of capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF) and microdialysis in freely moving rats was used to measure extracellular arginine, glutamate and aspartate in the thalamus during the formalin test. Microdialysis probes were implanted in the left ventral posterolateral (VPL) nucleus of the thalamus in rats. Samples were collected every 30 s, derivatized with fluorescein isothyocyanate and injected into a CZE-LIF instrument. After nine baseline samples, a subcutaneous formalin (5%, 50 microl) injection in the right hind paw caused an increase of arginine, glutamate and aspartate that lasted for about 3 min. These increases were calcium and nerve impulse dependent. These results indicate that the release of arginine, glutamate and aspartate may mediate rapid pain neural transmission in the VPL nucleus of the thalamus.


Subject(s)
Amino Acids/metabolism , Nociceptors/physiology , Ventral Thalamic Nuclei/metabolism , Animals , Arginine/metabolism , Aspartic Acid/metabolism , Electrophoresis, Capillary , Extracellular Space/metabolism , Glutamic Acid/metabolism , Male , Microdialysis , Pain/metabolism , Pain Measurement , Rats , Rats, Wistar , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL