Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 14(12): 6301-6316, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420305

ABSTRACT

A common processing approach for optical coherence tomography (OCT) uses a window function (e.g., Hann or rectangular window) for spectral shaping prior to calculating the Fourier transform. Here we build on a multi-window approach [Opt. Express8, 5267 (2017)10.1364/BOE.8.005267] that enables improved resolution while still suppressing side-lobe intensity. The shape of the window function defines the trade-off between main-lobe width (resolution) and side-lobe intensity. We have extended the approach to include the interferometric phase for phase-sensitive applications like vibrometry and Doppler OCT. Using the Hann window as a reference, we show that 11 Taylor windows are sufficient to achieve 50% improvement in axial resolution, -31 dB side-lobe intensity, and 20% improvement in phase sensitivity with low computational cost.

2.
J Neurophysiol ; 128(5): 1365-1373, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36259670

ABSTRACT

The mammalian cochlea contains three rows of outer hair cells (OHCs) that amplify the basilar membrane traveling wave with high gain and exquisite tuning. The pattern of OHC loss caused by typical methods of producing hearing loss in animal models (noise, ototoxic exposure, or aging) is variable and not consistent along the length of the cochlea. Thus, it is difficult to use these approaches to understand how forces from multiple OHCs summate to create normal cochlear amplification. Here, we selectively removed the third row of OHCs and Deiters' cells in adult mice and measured cochlear amplification. In the mature cochlear epithelia, expression of the Wnt target gene Lgr5 is restricted to the third row of Deiters' cells, the supporting cells directly underneath the OHCs. Diphtheria toxin administration to Lgr5DTR-EGFP/+ mice selectively ablated the third row of Deiters' cells and the third row of OHCs. Basilar membrane vibration in vivo demonstrated disproportionately lower reduction in cochlear amplification by about 13.5 dB. On a linear scale, this means that the 33% reduction in OHC number led to a 79% reduction in gain. Thus, these experimental data describe the impact of reducing the force of cochlear amplification by a specific amount. Furthermore, these data argue that because OHC forces progressively and sequentially amplify the traveling wave as it travels to its peak, the loss of even a relatively small number of OHCs, when evenly distributed longitudinally, will cause a substantial reduction in cochlear amplification.NEW & NOTEWORTHY Normal cochlear physiology involves force production from three rows of outer hair cells to amplify and tune the traveling wave. Here, we used a genetic approach to target and ablate the third row of outer hair cells in the mouse cochlea and found it reduced cochlear amplification by 79%. This means that the loss of even a relatively small number of OHCs, when evenly distributed, causes a substantial reduction in cochlear amplification.


Subject(s)
Hair Cells, Vestibular , Hearing Loss , Mice , Animals , Hair Cells, Auditory, Outer/physiology , Cochlea/metabolism , Noise , Mammals
3.
Hear Res ; 423: 108473, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35287989

ABSTRACT

Along with outer hair cell (OHC) somatic electromotility as the actuator of cochlear amplification, active hair bundle motility may be a complementary mechanism in the mammalian auditory system. Here, we searched the mouse cochlea for the presence of spontaneous bundle oscillations that have been observed in non-mammalian ears. In those systems, removal of the overlying membrane is necessary for spontaneous bundle oscillations to manifest. Thus, we used a genetic mouse model with a C1509G (cysteine-to-glycine) point mutation in the Tecta gene where the tectorial (TM) is lifted away from the OHC bundles, allowing us to explore whether unloaded bundles spontaneously oscillate. We used VOCTV in vivo to detect OHC length changes due to electromotility as a proxy for the spontaneous opening and closing of the mechanoelectrical transduction (MET) channels associated with bundle oscillation. In wild type mice with the TM attached to OHC bundles, we did find peaks in vibratory magnitude spectra. Such peaks were not observed in the mutants where the TM is detached from the OHC bundles. Statistical analysis of the time signals indicates that these peaks do not signify active oscillations. Rather, they are filtered responses of the sensitive wild type cochlea to weak background noise. We therefore conclude that, to the limits of our system (∼30 pm), there is no spontaneous mechanical activity that manifests as oscillations in OHC electromotility within the mouse cochlea, arguing that unloaded OHC bundles do not oscillate in vivo. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Subject(s)
Hair Cells, Auditory, Outer , Hair Cells, Vestibular , Animals , Cochlea/physiology , Hair Cells, Auditory, Outer/physiology , Mammals , Mice , Noise , Vibration
4.
Front Cell Dev Biol ; 9: 747870, 2021.
Article in English | MEDLINE | ID: mdl-34805158

ABSTRACT

After acoustic trauma, there can be loss of synaptic connections between inner hair cells and auditory neurons in the cochlea, which may lead to hearing abnormalities including speech-in-noise difficulties, tinnitus, and hyperacusis. We have previously studied mice with blast-induced cochlear synaptopathy and found that they also developed a build-up of endolymph, termed endolymphatic hydrops. In this study, we used optical coherence tomography to measure endolymph volume in live CBA/CaJ mice exposed to various noise intensities. We quantified the number of synaptic ribbons and postsynaptic densities under the inner hair cells 1 week after noise exposure to determine if they correlated with acute changes in endolymph volume measured in the hours after the noise exposure. After 2 h of noise at an intensity of 95 dB SPL or below, both endolymph volume and synaptic counts remained normal. After exposure to 2 h of 100 dB SPL noise, mice developed endolymphatic hydrops and had reduced synaptic counts in the basal and middle regions of the cochlea. Furthermore, round-window application of hypertonic saline reduced the degree of endolymphatic hydrops that developed after 100 dB SPL noise exposure and partially prevented the reduction in synaptic counts in the cochlear base. Taken together, these results indicate that endolymphatic hydrops correlates with noise-induced cochlear synaptopathy, suggesting that these two pathologic findings have a common mechanistic basis.

5.
Phys Rev E ; 97(6-1): 062411, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011516

ABSTRACT

We develop a framework for the general interpretation of the stochastic dynamical system near a limit cycle. Such quasiperiodic dynamics are commonly found in a variety of nonequilibrium systems, including the spontaneous oscillations of hair cells of the inner ear. We demonstrate quite generally that in the presence of noise, the phase of the limit cycle oscillator will diffuse, while deviations in the directions locally orthogonal to that limit cycle will display the Lorentzian power spectrum of a damped oscillator. We identify two mechanisms by which these stochastic dynamics can acquire a complex frequency dependence and discuss the deformation of the mean limit cycle as a function of temperature. The theoretical ideas are applied to data obtained from spontaneously oscillating hair cells of the amphibian sacculus.


Subject(s)
Hair Cells, Auditory/physiology , Models, Neurological , Amphibians , Animals , Computer Simulation , Diffusion , Fourier Analysis , Periodicity , Stochastic Processes , Temperature
6.
Biol Lett ; 13(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29237810

ABSTRACT

Males of the coqui treefrog, Eleutherodactylus coqui, produce a distinct two-note 'co-qui' advertisement call from sunset to midnight throughout most of the year. Previous work established that both the spectrotemporal aspects of the call and the frequency of highest inner-ear sensitivity change with altitude above sea level. These variations are such that the frequency of the emitted co-note closely matches the frequency to which the inner ear is most sensitive. Given this parallel variation, we expected that the call-evoked behavioural response of male coqui treefrogs would also show an altitude dependence, and hypothesized that males would produce their most robust acoustical territorial response to advertisement calls that match calls from their own altitude. We tested this hypothesis in the field by studying the vocal response behaviour of coquis to playbacks of synthetic, altitude-dependent conspecific calls, and indeed found that the most robust vocal responses were obtained using stimuli closely matching the calls from the same altitude.


Subject(s)
Altitude , Anura/physiology , Ear, Inner/physiology , Vocalization, Animal , Acoustic Stimulation , Animals , Male , Puerto Rico , Territoriality
7.
J Neurosci ; 35(43): 14457-66, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26511238

ABSTRACT

Hair cells of the vertebrate vestibular and auditory systems convert mechanical inputs into electrical signals that are relayed to the brain. This transduction involves mechanically gated ion channels that open following the deflection of mechanoreceptive hair bundles that reside on top of these cells. The mechano-electrical transduction includes one or more active feedback mechanisms to keep the mechanically gated ion channels in their most sensitive operating range. Coupling between the gating of the mechanosensitive ion channels and this adaptation mechanism leads to the occurrence of spontaneous limit-cycle oscillations, which indeed have been observed in vitro in hair cells from the frog sacculus and the turtle basilar papilla. We obtained simultaneous optical and electrophysiological recordings from bullfrog saccular hair cells with such spontaneously oscillating hair bundles. The spontaneous bundle oscillations allowed us to characterize several properties of mechano-electrical transduction without artificial loading the hair bundle with a mechanical stimulus probe. We show that the membrane potential of the hair cell can modulate or fully suppress innate oscillations, thus controlling the dynamic state of the bundle. We further demonstrate that this control is exerted by affecting the internal calcium concentration, which sets the resting open probability of the mechanosensitive channels. The auditory and vestibular systems could use the membrane potential of hair cells, possibly controlled via efferent innervation, to tune the dynamic states of the cells.


Subject(s)
Hair Cells, Auditory/physiology , Acoustic Stimulation , Animals , Calcium/metabolism , Calcium Signaling/physiology , Electrophysiological Phenomena/physiology , Feedback, Physiological/physiology , Ion Channels/physiology , Mechanotransduction, Cellular/physiology , Membrane Potentials/physiology , Patch-Clamp Techniques , Rana catesbeiana , Signal Transduction/physiology , Turtles , Vestibule, Labyrinth/physiology
8.
J Assoc Res Otolaryngol ; 16(2): 171-88, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25630769

ABSTRACT

Many recent accounts of the frog peripheral auditory system have reproduced Wever's (1973) schematic cross-section of the ear of a leopard frog. We sought to investigate to what extent this diagram is an accurate and representative depiction of the anuran inner ear, using three-dimensional reconstructions made from serial sections of Rana pipiens, Eleutherodactylus limbatus and Xenopus laevis. In Rana, three discrete contact membranes were found to separate the posterior otic (=endolymphatic) labyrinth from the periotic (=perilymphatic) system: those of the amphibian and basilar recesses and the contact membrane of the saccule. The amphibian 'tegmentum vasculosum' was distinguishable as a thickened epithelial lining within a posterior recess of the superior saccular chamber. These features were also identified in Eleutherodactylus, but in this tiny frog the relative proportions of the semicircular canals and saccule resemble those of ranid tadpoles. There appeared to be a complete fluid pathway between the right and left periotic labyrinths in this species, crossing the cranial cavity. Xenopus lacks a tegmentum vasculosum and a contact membrane of the saccule; the Xenopus ear is further distinguished by a lateral passage separating stapes from periotic cistern and a more direct connection between periotic cistern and basilar recess. The basilar and lagenar recesses are conjoined in this species. Wever's diagram of the inner ear of Rana retains its value for diagrammatic purposes, but it is not anatomically accurate or representative of all frogs. Although Wever identified the contact membrane of the saccule, most recent studies of frog inner ear anatomy have overlooked both this and the amphibian tegmentum vasculosum. These structures deserve further attention.


Subject(s)
Anura/anatomy & histology , Ear, Inner/anatomy & histology , Rana pipiens/anatomy & histology , Xenopus laevis/anatomy & histology , Animals , Image Processing, Computer-Assisted
9.
J Assoc Res Otolaryngol ; 13(1): 39-54, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22124891

ABSTRACT

Using whole-cell patch-clamp recordings, we measured changes in membrane capacitance (ΔC (m)) in two subsets of hair cells from the leopard frog amphibian papilla (AP): the low-frequency (100-500 Hz), rostral hair cells and the high-frequency (500-1200 Hz), caudal hair cells, in order to investigate tonotopic differences in exocytosis. Depolarizations of both rostral and caudal hair cells evoked robust ΔC (m) responses of similar amplitude. However, the calcium dependence of release, i.e., the relationship between ΔC (m) relative to the amount of calcium influx (Q (Ca) (2+)), was found to be linear in rostral hair cells but supra-linear in caudal hair cells. In addition, the higher numbers of vesicles released at caudal hair cell active zones suggests increased temporal precision of caudal hair cell exocytosis. ΔC (m) responses were also obtained in response to sinusoidal stimuli of varying frequency, but neither rostral nor caudal hair cell ΔC (m) revealed any frequency selectivity. While all AP hair cells express both otoferlin and synaptotagmin IV (SytIV), we obtained evidence of a tonotopic distribution of the calcium buffer calretinin which may further increase temporal resolution at the level of the hair cell synapse. Our findings suggest that the low (rostral) and high (caudal) frequency hair cells apply different mechanisms for fine-tuning exocytosis.


Subject(s)
Calcium/metabolism , Exocytosis/physiology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Pitch Perception/physiology , Animals , Computer Simulation , Electric Capacitance , Membrane Potentials/physiology , Membrane Proteins/metabolism , Models, Neurological , Patch-Clamp Techniques , Rana pipiens , Synaptotagmins/metabolism
10.
Hear Res ; 283(1-2): 70-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22146424

ABSTRACT

Three species of anuran amphibians (Odorrana tormota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of ∼3 kHz. In addition, we examined the ears of two species of Lao torrent frogs, Odorrana chloronota and Amolops daorum, that live in an acoustic environment approximating those of ultrasonically sensitive frogs. Our results suggest that the three ultrasound-detecting species have converged on small-scale functional modifications of the basilar papilla (BP), the high-frequency hearing organ in the frog inner ear. These modifications include: 1. reduced BP chamber volume, 2. reduced tectorial membrane mass, 3. reduced hair bundle length, and 4. reduced hair cell soma length. While none of these factors on its own could account for the US sensitivity of the inner ears of these species, the combination of these factors appears to extend their hearing bandwidth, and facilitate high-frequency/ultrasound detection. These modifications are also seen in the ears of O. chloronota, suggesting that this species is a candidate for high-frequency hearing sensitivity. These data form the foundation for future functional work probing the physiological bases of ultrasound detection by a non-mammalian ear.


Subject(s)
Ear, Inner/anatomy & histology , Ear, Inner/physiology , Hearing , Rana pipiens/anatomy & histology , Rana pipiens/physiology , Ultrasonics , Actins/analysis , Adaptation, Physiological , Amphibian Proteins/analysis , Animals , Biomarkers/analysis , Ear, Inner/chemistry , Immunohistochemistry , Male , Microscopy, Confocal , Myosin Heavy Chains/analysis , Organ of Corti/anatomy & histology , Organ of Corti/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...