Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Somatosens Mot Res ; 20(1): 45-69, 2003.
Article in English | MEDLINE | ID: mdl-12745444

ABSTRACT

Spike discharge activity of RA-type SI cortical neurons was recorded extracellularly in anesthetized monkeys and cats. Multiple applications (trials) of 10-50 Hz sinusoidal vertical skin displacement stimulation ("flutter") were delivered to the receptive field (RF). Analysis revealed large and systematic temporal trends not only in SI RA neuron responsivity (measured as spikes/s and as spikes/stimulus cycle), but also in entrainment, and in phase angle of the entrained responses. In contrast to SI RA neurons, the response of RA skin afferents to comparable conditions of skin flutter stimulation exhibited little or no dynamics. The occurrence and form of the SI RA neuron response dynamics that accompany skin flutter stimulation are shown to depend on factors such as stimulus frequency and the locus of the recording site in the global cortical response pattern. Comparison of recordings obtained in near-radial vs tangential microelectrode penetrations further reveals that the SI RA neuron response dynamics that occur during skin flutter stimulation are relatively consistent within, but heterogeneous across column-sized regions. The observed SI RA neuron response dynamics are suggested to account, in part, for the improved capacity to discriminate stimulus frequency after an exposure ("adaptation") to skin flutter stimulation (Goble and Hollins, J Acoust Soc Am 96: 771-780, 1994). Parallels with recent proposals about the contributions to visual perception of short-term primary sensory cortical neuron dynamics and synchrony in multineuron spike activity patterns are identified and discussed.


Subject(s)
Neurons/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Anesthesia , Animals , Cats , Electric Stimulation , Electrophysiology , Microelectrodes , Physical Stimulation , Saimiri , Skin/innervation , Time Factors , Touch/physiology
2.
Somatosens Mot Res ; 18(4): 263-85, 2001.
Article in English | MEDLINE | ID: mdl-11794729

ABSTRACT

Three types of experiment were carried out on anesthetized monkeys and cats. In the first, spike discharge activity of rapidly adapting (RA) SI neurons was recorded extracellularly during the application of different frequencies of vibrotactile stimulation to the receptive field (RF). The second used the same stimulus conditions to study the response of RA-I (RA) cutaneous mechanoreceptive afferents. The third used optical intrinsic signal (OIS) imaging and extracellular neurophysiological recording methods together, in the same sessions, to evaluate the relationship between the SI optical and RA neuron spike train responses to low- vs high-frequency stimulation of the same skin site. RA afferent entrainment was high at all frequencies of stimulation. In contrast, SI RA neuron entrainment was much lower on average, and was strongly frequency-dependent, declining in near-linear fashion from 6 to 200 Hz. Even at 200 Hz, however, unambiguous frequency-following responses were present in the spike train activity of som


Subject(s)
Pyramidal Cells/physiology , Somatosensory Cortex/physiology , Touch/physiology , Vibration , Animals , Cats , Extracellular Space/physiology , Macaca , Mechanoreceptors/physiology , Median Nerve/physiology , Microelectrodes , Neurons, Afferent/physiology , Physical Stimulation , Saimiri , Skin/innervation , Somatosensory Cortex/cytology , Tibial Nerve/physiology
3.
Neuroscience ; 95(1): 51-62, 2000.
Article in English | MEDLINE | ID: mdl-10619461

ABSTRACT

Intrinsic signal optical imaging was used to record the changes in light transmittance evoked by electrical stimulation in slices prepared from sensorimotor cortex of young adult rats. The spatial characteristics of the optical signal evoked by stimulation of layer II/III, IV, V, or VI were clearly different. Layer IV and V stimulation elicited a radially-oriented region of increased light transmittance which was "hourglass" shaped: its tangential extent was greatest in layers II/III and layer V, and least in layer IV. Layer VI stimulation also elicited a radially-oriented signal but the tangential extent of this signal was the same across layers II-VI--that is, it was column-shaped. Upper layer stimulation produced a signal whose tangential extent was much greater in the upper layers than its radial extent to the deeper layers. The spatial form of the stimulus-evoked intrinsic signal was not dependent on the cytoarchitectonic area in which it was elicited. The tangential and radial distribution of the signal evoked by stimulation of different layers appears to reflect the connectivity of cortex, particularly the horizontal connectivity present in layers II/III, V, and VI, and the interlaminar connections that exist between layers II/III and V and from layers VI to IV. The spatial characteristics of the intrinsic signal were independent of the strength of stimulation used. The idea that inhibitory mechanisms restrict the tangential extent of the signal was evaluated in experiments in which the intrinsic signal was recorded before and after the addition of 10 microM bicuculline methiodide. In all slices studied in this way (n = 12), bicuculline methiodide drastically increased the tangential extent of the signal. In 4/12 slices, the tangential spread of the signal was asymmetric with respect to the stimulus site. Asymmetric spread of the signal occurred for both layer V and layer VI stimulation and, in 2/4 of those cases, could be attributed to a cytoarchitectonic border whose presence appeared to restrict the spread of the signal across the border. Although increasing stimulation strength did not change the spatial characteristics of the radially-oriented signal evoked by layer V or VI stimulation, at maximal stimulus intensity the signal evoked from these layers was often accompanied by a band of decreased light transmittance in the most superficial layers (layers I and II). It is concluded that in vitro intrinsic optical signal imaging allows one to image a response attributable to activation of local subsets of cortical connections. In addition, the opposite effects of high-intensity deep layer stimulation on the superficial layers vs layers III-VI of the same column raise the possibility that the most superficial layers may respond differently to repetitive input drive than the rest of the cortical column.


Subject(s)
Somatosensory Cortex/physiology , Animals , Bicuculline/analogs & derivatives , Bicuculline/pharmacology , Electric Stimulation , In Vitro Techniques , Neural Inhibition/physiology , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/cytology , Somatosensory Cortex/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...