Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(9): e2006341, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33448090

ABSTRACT

Fused silica glass is the material of choice for many high-performance components in optics due to its high optical transparency combined with its high thermal, chemical, and mechanical stability. Especially, the generation of fused silica microstructures is of high interest for microoptical and biomedical applications. Direct laser writing (DLW) is a suitable technique for generating such devices, as it enables nearly arbitrary structuring down to the sub-micrometer level. In this work, true 3D structuring of transparent fused silica glass using DLW with tens of micrometer resolution and a surface roughness of Ra  ≈ 6 nm is demonstrated. The process uses a two-photon curable silica nanocomposite resin that can be structured by DLW, with the printout being convertible to transparent fused silica glass via thermal debinding and sintering. This technology will enable a plethora of applications from next-generation optics and photonics to microfluidic and biomedical applications with resolutions on the scale of tens of micrometers.

2.
ACS Nano ; 11(6): 6396-6403, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28582617

ABSTRACT

Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.

3.
Angew Chem Int Ed Engl ; 56(20): 5625-5629, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28407401

ABSTRACT

Using an advanced functional photoresist we introduce direct-laser-written (DLW) 3D microstructures capable of complete degradation on demand. The networks consist exclusively of reversible bonds, formed by irradiation of a phenacyl sulfide linker, giving disulfide bonds in a radical-free step-growth polymerization via a reactive thioaldehyde. The bond formation was verified in solution by ESI-MS. To induce cleavage, dithiothreitol causes a thiol-disulfide exchange, erasing the written structure. The mild cleavage of the disulfide network is highly orthogonal to other, for example, acrylate-based DLW structures. To emphasize this aspect, DLW structures were prepared incorporating reversible structural elements into a non-reversible acrylate-based standard scaffold, confirming subsequent selective cleavage. The high lateral resolution achievable was verified by the preparation of well-defined line gratings with line separations of down to 300 nm.

4.
Chemistry ; 23(21): 4990-4994, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28199055

ABSTRACT

Oligonucleotides containing photo-caged dienes were prepared and shown to react quantitatively in a light-induced Diels-Alder cycloaddition with functional maleimides in aqueous solution within minutes. Due to its high yield and fast rate, the reaction was exploited for DNA surface patterning with sub-micrometer resolution employing direct laser writing (DLW). Functional DNA arrays were written by direct laser writing (DLW) in variable patterns, which were further encoded with fluorophores and proteins through DNA directed immobilization. This mild and efficient light-driven platform technology holds promise for the fabrication of complex bioarrays with sub-micron resolution.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Maleimides/chemistry , Click Chemistry , Cycloaddition Reaction , Lasers , Light
5.
Chem Commun (Camb) ; 52(9): 1975-8, 2016 Jan 31.
Article in English | MEDLINE | ID: mdl-26687371

ABSTRACT

A wavelength selective technique for light-induced network formation based on two photo-active moieties, namely ortho-methylbenzaldehyde and tetrazole is introduced. The network forming species are photo-reactive star polymers generated via reversible activation fragmentation chain transfer (RAFT) polymerization, allowing the network to be based on almost any vinylic monomer. Direct laser writing (DLW) allows to form any complex three-dimensional structure based on the photo-reactive star polymers.

6.
Chemistry ; 21(38): 13186-90, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26235994

ABSTRACT

A light induced strategy for the design of ß-cyclodextrin (CD) based supramolecular devices is introduced, presenting a novel tool to fabricate multifunctional biointerfaces. Precision photolithography of a modified ß-CD was established on a light sensitive tetrazole surface immobilized on a bioinspired polydopamine (PDA) anchor layer via various shadow masks, as well as via direct laser writing (DLW), in order to craft any desired printboard design. Interfacial molecular recognition provided by light generated cavitate domains was demonstrated via spatially resolved encoding, erasing, and recoding of distinct supramolecular guest patterns. Thus, the light directed shaping of receptor monolayers introduces a powerful path to control supramolecular assemblies on various surfaces.

7.
Chem Commun (Camb) ; 51(16): 3363-6, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25621835

ABSTRACT

Photoreactive gold nanoparticles (NP) can be encoded in a spatially resolved fashion using direct laser writing techniques into variable patterns. The surface of the gold nanoparticles is imparted with photoreactivity by tethering photo-caged dienes ('photoenols'), which are able to undergo a rapid Diels-Alder cycloaddition with surface anchored enes. Subsequent to surface encoding, the particles feature residual caged dienes, which can be reactivated for secondary surface encoding.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Photochemical Processes , Alkenes/chemistry
8.
Macromol Rapid Commun ; 34(4): 335-40, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23345135

ABSTRACT

Three-dimensional microstructures are fabricated employing the direct laser writing process and radical thiol-ene polymerization. The resin system consists of a two-photon photoinitiator and multifunctional thiols and olefins. Woodpile photonic crystals with 22 layers and a rod distance of 2 µm are fabricated. The structures are characterized via scanning electron microscopy and focused ion beam milling. The thiol-ene polymerization during fabrication is verified via infrared spectroscopy. The structures are grafted in a subsequent thiol-Michael addition reaction with different functional maleimides. The success of the grafting reaction is evaluated via laser scanning microscopy and X-ray photoelectron spectroscopy. The grafting density is calculated to be close to 200 molecules µm(-2) .


Subject(s)
Lasers , Sulfhydryl Compounds/chemistry , Alkenes/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...