Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(14): 8523-8530, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29902373

ABSTRACT

Deciphering disulfide bond patterns in proteins remains a significant challenge. In the present study, interlinked disulfide bonds connecting peptide chains are homolytically cleaved with 193 nm ultraviolet photodissociation (UVPD). Analysis of insulin showcased the ability of UVPD to cleave multiple disulfide bonds and provide sequence coverage of the peptide chains in the same MS/MS event. For proteins containing more complex disulfide bonding patterns, an approach combining partial reduction and alkylation mitigated disulfide scrambling and allowed assignment of the array of disulfide bonds. The 4 disulfide bonds of lysozyme and the 19 disulfide bonds of serotransferrin were characterized through LC/UVPD-MS analysis of nonreduced and partially reduced protein digests.


Subject(s)
Disulfides/analysis , Insulin/chemistry , Mass Spectrometry/methods , Muramidase/chemistry , Transferrin/chemistry , Amino Acid Sequence , Animals , Cattle , Humans , Peptides/chemistry , Photolysis , Ultraviolet Rays
2.
J Am Soc Mass Spectrom ; 28(7): 1462-1472, 2017 07.
Article in English | MEDLINE | ID: mdl-28315237

ABSTRACT

N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD. Graphical Abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...