Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(18): 13995-14005, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683165

ABSTRACT

Charge transport nonlinearities in semiconductor quantum dots and nanorods are studied. Using a density matrix formalism, we retrieve the field-dependent nonlinear mobility and show the possibility of intra-pulse gain. We further demonstrate that the dynamics of master equations can be captured in an analytical formula for the field-dependent charge carrier mobility, e.g. for two-level systems. This equation extends the linear response theory based Kubo-Greenwood result to nonlinear processes at elevated field strength, easily reached in THz transport spectroscopy. With these tools we analyze the field strength, chirp, temperature and dephasing dependence of the charge carrier mobility in the model system of CdSe quantum dots and wires. Stark broadening and Rabi splitting result in strong alterations of the mobility spectra, pronounced at low temperatures. The mobility spectra are strongly temperature and pulse shape dependent in the nonlinear regime. The findings are of immediate interest e.g. for nonlinear THz generation, conversion and amplification in 6G technology and nano electronics. Our results further enable experimentalists to fit and understand measured charge transport nonlinearities with analytical expressions and to design nanosystems with engineered material properties.

2.
Phys Chem Chem Phys ; 25(4): 3354-3360, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36633188

ABSTRACT

We introduce a response theory based transformation for excitonic polarizability into mobility, which allows an in-depth analysis of optical pump-THz probe conductivity experiments, and compare the results with those of a conventional oscillator model. THz spectroscopy is of high interest e.g. for investigations in high bandwidth and low noise nanoelectronics or solar energy harvesting nanomaterials. In contrast to simple ω scaling of estimated static polarizability, suggested in the literature, an appropriate transformation of the spectral response into mobility can be achieved in principle forward and backward due to the presence of dephasing, as we show for the exemplary system of CdSe nanoplatelets. Common analysis approaches capture the excitonic properties only under specific conditions, and do not apply in many cases. We demonstrate that a thermal distribution of excitons and transitions between higher states in general have to be considered and that dephasing has to be taken into account for a proper transformation at all temperatures. The presented in-depth understanding of the exciton mobility in nanoparticles can help improve e.g. solar hydrogen generation, charge extraction efficiencies of solar cells, or light emission performance of LEDs.

3.
Nanoscale ; 14(1): 19-25, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34897357

ABSTRACT

We investigate THz radiation absorption by charge carriers, focusing on the mobility in nanorods and wires. We show that for short rods the mobility is limited by the high spacing of the charge carrier energy levels, while for longer wires (greater 25 nm) finite dephasing results in considerably higher low frequency mobility. Analyzing the length, temperature and population dependence, we demonstrate that, apart from the temperature dependent dephasing, the mobility becomes strongly charge carrier population dependent. The latter results in no simple linear relationship between carrier density and conductivity. Additionally their thermal distribution determines the mobility, measured in experiments. We further show that Drude or Plasmon models apply only for long wires at elevated temperatures, while for short length quantization results in considerable alterations. In contrast to those phenomenological models, i.e. a negative imaginary part of the frequency-dependent conductivity in a nanosystem can be understood microscopically. Based on the results, we develop guidelines to analyze 1D terahertz conductivity spectra. Our approach provides also a new tool to optimize the mobility by nanowire length as well as to analyze the dephasing, not by conventional wave mixing techniques, but by coherent optical pump-THz probe spectroscopy.

4.
J Phys Chem Lett ; 12(32): 7688-7695, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34378384

ABSTRACT

We investigate the charge carrier mobility in 1D and 2D semiconductor nanoparticle domains with a focus on the interpretation of THz mobility measurements. We provide a microscopic understanding of the frequency-dependent charge carrier transport in these structures of finite lateral size. Yet unexplored oscillations in the frequency-dependent complex conductivity and a strong size dependence of the mobility are observed. The quantum nature of the charge carrier states results in oscillations in the frequency-dependent mobility for subresonant THz probing, seen in experiments. The effect is based on the lack of an energy continuum for the charge motion. In 2D systems the mobility is further governed by transitions in the two orthogonal x- and y-directions and depends nontrivially on the THz polarization, as well as the quantum well lateral aspect ratio, defining the energetic detuning of the lowest THz-photon transitions in both directions. We analyze the frequency, length, and effective mass dependencies.

5.
Nanoscale ; 13(12): 6266-6267, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33734269

ABSTRACT

Correction for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .

6.
Nanoscale ; 12(46): 23521-23531, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33225335

ABSTRACT

We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 103 cm2 V-1 s-1 to more than 1.4 × 104 cm2 V-1 s-1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 101 cm2 V-1 s-1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm2 s-1 to ∼ 5 cm2 s-1, while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.

7.
Nanoscale ; 12(27): 14448-14458, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32618327

ABSTRACT

We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.

8.
Nanoscale ; 11(37): 17293-17300, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31512703

ABSTRACT

We investigate broadband two-photon absorption autocorrelators based on II-VI semiconductor nanoplatelets as an alternative to common second harmonic generation based techniques. As compared to bulk materials the exceptionally high enhancement of two-photon absorption in these 2D structures results in very efficient two-photon absorption based autocorrelation detected via PL emission. We compare the results with TPA autocorrelation in CdS bulk as well as SHG based autocorrelation in ß-barium borate. We show that CdSe nanoplatelet based autocorrelation can exceed the efficiency of conventional methods by two orders in magnitude, especially for short interaction length, and allows a precise pulse-width determination. We demonstrate that very high two-photon absorption cross sections of the nanoplatelets are the basis for this effective TPA autocorrelation. Based on our results with II-VI nanoplatelets efficient broadband autocorrelation with more than ∼100 nm bandwidth and very high sensitivity seems feasible.

9.
J Am Chem Soc ; 139(42): 15265-15274, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28985461

ABSTRACT

Spontaneous polarization of a nonpolar molecule upon photoexcitation (the sudden polarization effect) earlier discussed for 90°-twisted alkenes is observed and calculated for planar ring-fluorinated stilbenes, trans-2,3,5,6,2',3',5',6'-octofluorostilbene (tF2356) and trans-2,3,4,5,6,2',3',4',5',6'-decafluorostilbene (tF23456). Due to the fluorination, Franck-Condon states S1FC and S2FC are dominated by the quasi-degenerate HOMO-1 → LUMO and HOMO-2 → LUMO excitations, while their interaction gives rise to a symmetry-broken zwitterionic S1 state. After optical excitation of tF2356, one observes an ultrafast (∼0.06 ps) evolution that reflects relaxation from initial nonpolar S3FC to long-lived (1.3 ns in n-hexane and 3.4 ns in acetonitrile) polar S1. The polarity of S1 is evidenced by a solvatochromic shift of its fluorescence band. The experimental results provide a sensitive test for quantum-chemical calculations. In particular, our calculations agree with the experiment, and raise concerns about the applicability of the common TDDFT approach to relatively simple stilbenic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...