Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1125770, 2023.
Article in English | MEDLINE | ID: mdl-36938057

ABSTRACT

Introduction: Identifying rice (Oryza sativa) germplasm with improved efficiency of primary metabolism is of utmost importance in order to increase yields. One such approach can be attained through screening genetically diverse populations under altered environmental conditions. Growth or treatment under low carbon dioxide (CO2) concentrations can be used as a means of revealing altered leaf photorespiration, respiration and other metabolic variants. Methods: We developed a pipeline for very high throughput treatment of gamma- and ethyl methanesulfonate- (EMS) induced mutant populations of IR64 rice seedlings at very low CO2 for 7 days. 1050 seedlings per batch at 5th leaf stage were exposed to 60 ppm CO2 for the first day and 30 ppm for the remaining three days. Following this, putative candidates were identified by measuring chlorophyll depletion using SPAD. Screening results showed a distinct difference between the mutants and the WTs. Results and discussion: The mean chlorophyll loss in WTs ranged from 65% to 11% respectively, whereas in the mutant lines chlorophyll loss ranged from 0 to 100%, suggesting considerable phenotypic variation. Rice mutants with a reduced chlorophyll reduction (<10%) were identified as 'Chlorophyll retention mutants' (CRMs) under low CO2 stress. In total, 1909 mutant lines (14,000 seedlings) were screened for chlorophyll content under 30 ppm CO2, with 26 lines selected for detailed screening. These 26 putative candidates were self-seeded to produce an M5 generation, used to determine the genetic control of the altered response to low CO2. Gas exchange of light and CO2 response revealed that there were significant variations among photosynthetic properties in two selected rice mutants. The CO2 compensation points in the absence of photorespiration and leaf respiration rates were lower than the WTs and anatomical analyses showed that CRM 29 had improved mesophyll cell area. We propose that this approach is useful for generating new material for breeding rice with improved primary metabolism.

2.
Plant Cell Environ ; 38(9): 1686-98, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25142172

ABSTRACT

Phenotypic plasticity in overcoming heat stress-induced damage across hot tropical rice-growing regions is predominantly governed by relative humidity. Expression of transpiration cooling, an effective heat-avoiding mechanism, will diminish with the transition from fully flooded paddies to water-saving technologies, such as direct-seeded and aerobic rice cultivation, thus further aggravating stress damage. This change can potentially introduce greater sensitivity to previously unaffected developmental stages such as floral meristem (panicle) initiation and spikelet differentiation, and further intensify vulnerability at the known sensitive gametogenesis and flowering stages. More than the mean temperature rise, increased variability and a more rapid increase in nighttime temperature compared with the daytime maximum present a greater challenge. This review addresses (1) the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies; (2) the major disconnect with high night temperature response between field and controlled environments in terms of spikelet sterility; (3) highlights the most important mechanisms that affect key grain quality parameters, such as chalk formation under heat stress; and finally (4), we model and estimate heat stress-induced spikelet sterility taking South Asia as a case study.


Subject(s)
Agriculture/methods , Oryza/physiology , Agriculture/trends , Asia, Southeastern , Climate Change , Droughts , Oryza/genetics , Seeds/physiology , Stress, Physiological , Temperature , Vapor Pressure
3.
J Exp Bot ; 57(2): 329-41, 2006.
Article in English | MEDLINE | ID: mdl-16330523

ABSTRACT

Light intensity and atmospheric CO2 partial pressure are two environmental signals known to regulate stomatal numbers. It has previously been shown that if a mature Arabidopsis leaf is supplied with either elevated CO2 (750 ppm instead of ambient at 370 ppm) or reduced light levels (50 micromol m-2 s-1 instead of 250 micromol m-2 s-1), the young, developing leaves that are not receiving the treatment grow with a stomatal density as if they were exposed to the treatment. But the signal(s) that it is believed is generated in the mature leaves and transmitted to developing leaves are largely unknown. Photosynthetic rates of treated, mature Arabidopsis leaves increased in elevated CO2 and decreased when shaded, as would be expected. Similarly, the levels of sugars (glucose, fructose, and sucrose) in the treated mature leaves increased in elevated CO2 and decreased with shade treatment. The levels of sugar in developing leaves were also measured and it was found that they mirrored this result even though they were not receiving the shade or elevated CO2 treatment. To investigate the effect of these treatments on global gene expression patterns, transcriptomics analysis was carried out using Affymetrix, 22K, and ATH1 arrays. Total RNA was extracted from the developing leaves after the mature leaves had received either the ambient control treatment, the elevated CO2 treatment, or the shade treatment, or both elevated CO2 and shade treatments for 2, 4, 12, 24, 48, or 96 h. The experiment was replicated four times. Two other experiments were also conducted, one to compare and contrast gene expression in response to plants grown at elevated CO2 and the other to look at the effect of these treatments on the mature leaf. The data were analysed and 915 genes from the untreated, signalled leaves were identified as having expression levels affected by the shade treatment. These genes were then compared with those whose transcript abundance was affected by the shade treatment in the mature treated leaves (1181 genes) and with 220 putative 'stomatal signalling' genes previously identified from studies of the yoda mutant. The results of these experiments and how they relate to environmental signalling are discussed, as well as possible mechanisms for systemic signalling.


Subject(s)
Acclimatization , Arabidopsis/metabolism , Carbon Dioxide/pharmacology , Light , Signal Transduction , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis Proteins/classification , Arabidopsis Proteins/genetics , Carbohydrate Metabolism , Chlorophyll/analysis , Diffusion , Environment , Gene Expression Regulation, Plant , Genes, Plant/physiology , Oligonucleotide Array Sequence Analysis , Photosynthesis , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , RNA, Plant/metabolism
4.
J Exp Bot ; 56(410): 287-96, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15596481

ABSTRACT

Naturally occurring variation in wild species can be used to increase the genetic diversity of cultivated crops and improve agronomic value. Populations of introgression lines carrying wild species alleles afford an opportunity to identify traits associated with the introgressed regions, and facilitate characterization of the biochemistry and genetics underlying these phenotypes. Understanding plant metabolic pathways and the interactions between genes, phenotype, and environment is fundamental to functional genomics. Successful analysis of the complex network of plant metabolism requires analytical methods able to record information on as many metabolites as possible. Metabolite profiling is used to provide a snapshot of the metabolome in samples which differ in a known factor such as genetic background. Differences between the metabolite profiles can identify those metabolites/metabolic pathways affected by the introgression and allow genetic maps for metabolic alterations to be established. A Time-of-Flight Mass Spectrometry method is presented, with associated data reduction, used for profiling aqueous metabolites fom tomato. Analysis of ripe fruits of two tomato species, Lycopersicon esculentum and L. pennellii, showed differences in the amounts of many metabolites, including organic acids and sugars. Six introgression lines, L. pennellii introgressions within L. esculentum, were also examined and showed that Principal Component Analysis can reveal subtle differences in metabolism of the introgressed lines when compared to their parents.


Subject(s)
Solanum lycopersicum/metabolism , Fruit , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Phenotype , Species Specificity , Spectrometry, Mass, Electrospray Ionization/methods
5.
New Phytol ; 153(3): 477-484, 2002 Mar.
Article in English | MEDLINE | ID: mdl-33863227

ABSTRACT

• Stomatal density responses by 48 accessions of Arabidopsis, to CO2 enrichment, broadly parallel interspecific observations. • Accessions differing in the degree of stomatal response to both CO2 and drought differed in flower production. Under well watered conditions flowering benefits from a small reduction in stomatal density with CO2 enrichment, but benefits from a large reduction under drought. • Stomatal density increases with altitude in Vaccinium myrtillus but is also strongly influenced by exposure. Exposed plants had higher stomatal densities than plants at the same altitude but in a community of individuals. This difference might be explained by systemic signalling within the plant as mature leaves detect both irradiance and [CO2 ], subsequently controlling the response of stomatal development in developing leaves. • Plants with the highest stomatal densities also had the highest stomatal conductances and photosynthetic rates. This suggests that signalling from mature to developing leaves predetermines the potential of the developing leaf to maximize its photosynthetic potential, including associated features such as nitrogen allocation, during early stages of development in the enclosed bud.

7.
Philos Trans R Soc Lond B Biol Sci ; 355(1402): 1517-29, 2000 Oct 29.
Article in English | MEDLINE | ID: mdl-11128005

ABSTRACT

Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this inefficiency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants.


Subject(s)
Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulosephosphates/metabolism , Animals , Energy Metabolism , Light
8.
Plant Physiol ; 124(1): 183-90, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10982433

ABSTRACT

The importance of subzero temperature interactions with elevated CO(2) on plant carbon metabolism has received rather little attention, despite their likely role in influencing future vegetation productivity and dynamics. Here we focused on the critical issues of CO(2)-enrichment effects on leaf-freezing temperatures, subsequent membrane damage, and recovery of the photosynthetic system. We show that growth in elevated CO(2) (70 Pa) results in a substantial and significant (P<0.01) increase (up to 4 degrees C) in the ice nucleation temperature of leaves of Maidenhair tree (Ginkgo biloba), which was observed consistently throughout the 1999 growing season relative to their ambient CO(2) (35 Pa) counterparts. We suggest that increased sensitivity of leaves to ice damage after growth in elevated CO(2) provides an explanation for increased photoinhibition observed in the field early and late in the growing season when low nighttime temperatures are experienced. This new mechanism is proposed in addition to the earlier postulated explanation for this phenomenon involving a reduction in the rate of triose-P utilization owing to a decrease in the rate of carbohydrate export from the leaf.


Subject(s)
Carbon Dioxide/metabolism , Ginkgo biloba/physiology , Photosynthesis , Plants, Medicinal , Cell Membrane , Chlorophyll/metabolism , Chlorophyll A , Freezing , Ginkgo biloba/growth & development , Ginkgo biloba/metabolism , Ice , Light , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology
9.
Plant Physiol ; 123(3): 1143-52, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10889263

ABSTRACT

We analyzed the impact of growth at either 350 (ambient) or 700 (elevated) microL L(-1) CO(2) on key elements of the C(4) pathway (photosynthesis, carbon isotope discrimination, and leaf anatomy) using the C(4) cereal sorghum (Sorghum bicolor L. Moench.). Gas-exchange analysis of the CO(2) response of photosynthesis indicated that both carboxylation efficiency and the CO(2) saturated rate of photosynthesis were lower in plants grown at elevated relative to ambient CO(2). This was accompanied by a 49% reduction in the phosphoenolpyruvate carboxylase content of leaves (area basis) in the elevated CO(2)-grown plants, but no change in Rubisco content. Despite the lower phosphoenolpyruvate carboxylase content, there was a 3-fold increase in C isotope discrimination in leaves of plants grown at elevated CO(2) and bundle sheath leakiness was estimated to be 24% and 33%, respectively, for the ambient and elevated CO(2)-grown plants. However, we could detect no difference in quantum yield. The ratio of quantum yield of CO(2) fixation to PSII efficiency was lower in plants grown at elevated CO(2), but only when leaf internal was below 50 microL L(-1). This suggests a reduction in the efficiency of the C(4) cycle when [CO(2)] is low, and also implies increased electron transport to acceptors other than CO(2). Analysis of leaf sections using a transmission electron microscope indicated a 2-fold decrease in the thickness of the bundle sheath cell walls in plants grown at elevated relative to ambient CO(2). These results suggest that significant acclimation to increased CO(2) concentrations occurs in sorghum.


Subject(s)
Carbon Dioxide/metabolism , Edible Grain/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Blotting, Western , Chlorophyll/analysis , Chlorophyll A , Edible Grain/physiology , Edible Grain/ultrastructure , Electrophoresis, Polyacrylamide Gel , Fluorescence , Light-Harvesting Protein Complexes , Microscopy, Electron , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Plant Leaves/physiology , Plant Leaves/ultrastructure , Ribulose-Bisphosphate Carboxylase/metabolism
10.
Biochem J ; 324 ( Pt 2): 503-9, 1997 Jun 01.
Article in English | MEDLINE | ID: mdl-9182710

ABSTRACT

We recently developed a method of purifying amyloplasts from developing maize (Zea mays L.) endosperm tissue [Neuhaus, Thom, Batz and Scheibe (1993) Biochem. J. 296, 395-401]. In the present paper we analyse how glucose 6-phosphate (Glc6P) and other phosphorylated compounds enter the plastid compartment. Using a proteoliposome system in which the plastid envelope membrane proteins are functionally reconstituted, we demonstrate that this type of plastid is able to transport [14C]Glc6P or [32P]Pi in counter exchange with Pi, Glc6P, dihydroxyacetone phosphate and phosphoenolpyruvate. Glucose 1-phosphate, fructose 6-phosphate and ribose 5-phosphate do not act as substrates for counter exchange. Besides hexose phosphates, ADP-glucose (ADPGlc) also acts as a substrate for starch synthesis in isolated maize endosperm amyloplasts. This process exhibits saturation kinetics with increasing concentrations of exogenously supplied [14C]ADPGlc, reaching a maximum at 2mM. Ultrasonication of isolated amyloplasts greatly reduces the rate of ADPGlc-dependent starch synthesis, indicating that the process is dependent on the intactness of the organelles. The plastid ATP/ADP transporter is not responsible for ADPGlc uptake. Data are presented that indicate that ADPGlc is transported by another translocator in counter exchange with AMP. To analyse the physiology of starch synthesis in more detail, we examined how Glc6P- and ADPGlc-dependent starch synthesis in isolated maize endosperm amyloplasts interact. Glc6P-dependent starch synthesis is not inhibited by increasing concentrations of ADPGlc. In contrast, the rate of ADPGlc-dependent starch synthesis is reduced by increasing concentrations of ATP necessary for Glc6P-dependent starch synthesis. The possible modes of inhibition of ADPGlc-dependent starch synthesis by ATP are discussed with respect to the stromal generation of AMP required for ADPGlc uptake.


Subject(s)
Adenosine Diphosphate Glucose/physiology , Starch/biosynthesis , Zea mays/metabolism , Adenine Nucleotides/metabolism , Biological Transport , Cell Membrane/metabolism , Glucose-6-Phosphate/physiology , Kinetics , Phosphorylation , Plant Proteins/biosynthesis , Plastids/metabolism , Proteolipids/metabolism , Seeds/cytology , Seeds/metabolism
11.
Biochem J ; 320 ( Pt 1): 7-10, 1996 Nov 15.
Article in English | MEDLINE | ID: mdl-8947460

ABSTRACT

We have investigated whether there is evidence for the presence of different types of phosphate translocators in envelopes purified from pepper-fruit chromoplasts. A method was developed that allowed the purification of envelope membranes from isolated pepper-fruit chromoplasts. Proteoliposomes containing envelope-membrane proteins are able to import inorganic phosphate (P1) or glucose 6-phosphate (Glc6P). In both cases, the rate of import is strongly dependent upon preloading of proteoliposomes with either P1, dihydroxyacetone phosphate (DHAP) or Glc6P. This demonstrates the presence of a phosphate translocator activity catalysing a counter exchange of phosphorylated intermediates. Interestingly, a high external concentration of Glc6P does not strongly inhibit P1 uptake into proteoliposomes preloaded with DHAP, whereas external Glc6P strongly inhibits P1 uptake into proteoliposomes preloaded with Glc6P. This observation strongly indicates that two types of phosphate translocator are present in chromoplast envelopes from red-pepper fruits. These data are discussed with respect to the possible physiological function of two types of phosphate translocator in one type of plastid.


Subject(s)
Carrier Proteins/metabolism , Chloroplasts/metabolism , Phosphates/metabolism , Vegetables/metabolism , Biological Transport , Dihydroxyacetone Phosphate/pharmacology , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate/pharmacology , Phosphate-Binding Proteins , Proteolipids
12.
Plant Physiol ; 109(1): 113-121, 1995 Sep.
Article in English | MEDLINE | ID: mdl-12228584

ABSTRACT

Many environmental and experimental conditions lead to accumulation of carbohydrates in photosynthetic tissues. This situation is typically associated with major changes in the mRNA and protein complement of the cell, including metabolic repression of photosynthetic gene expression, which can be induced by feeding carbohydrates directly to leaves. In this study we examined the carbohydrate transport properties of chloroplasts isolated from spinach (Spinacia oleracea L.) leaves fed with glucose for several days. These chloroplasts contain large quantities of starch, can perform photosynthetic 3-phosphoglycerate reduction, and surprisingly also have the ability to perform starch synthesis from exogenous glucose-6-phosphate (Glc-6-P) both in the light and in darkness, similarly to heterotrophic plastids. Glucose-1-phosphate does not act as an exogenous precursor for starch synthesis. Light, ATP, and 3-phosphoglyceric acid stimulate Glc-6-P-dependent starch synthesis. Short-term uptake experiments indicate that a novel Glc-6-P-translocator capacity is present in the envelope membrane, exhibiting an apparent Km of 0.54 mM and a Vmax of 2.9 [mu]mol Glc-6-P mg-1 chlorophyll h-1. Similar results were obtained with chloroplasts isolated from glucose-fed potato leaves and from water-stressed spinach leaves. The generally held view that sugar phosphates transported by chloroplasts are confined to triose phosphates is not supported by these results. A physiological role for a Glc-6-P translocator in green plastids is presented with reference to the source/sink function of the leaf.

14.
Planta ; 189(2): 174-81, 1993 Feb.
Article in English | MEDLINE | ID: mdl-7763376

ABSTRACT

Sucrose-phosphate synthase (SPS) from leaves of spinach (Spinacia oleracea L.) has been purified to homogeneity by a procedure involving precipitation with polyethylene glycol and chromatography over diethylaminoethylcellulose, omega-aminohexyl-agarose, Mono Q and Blue Affinity columns. The purification factor was 838 and the final specific activity was 1.3 nkat.(mg protein)-1. On denaturing gels the major polypeptide was 120 kDa but there was also a variable amount of smaller polypeptides in the range of 90 to 110 kDa. A new activity stain was developed to allow visualization of SPS in gels. The holoenzyme had a molecular weight of about 240 and 480 kDa in native gels and Sepharose, respectively. A high-titre polyclonal antibody was obtained which reacted with SPS from other species including wheat, potato, banana and maize. Screening of a spinach-leaf cDNA-expression library with the antibody allowed the isolation of a full-length clone. Sequencing revealed a predicted molecular weight of 117649 Da, and considerable homology with the recently published sequence for maize leaf (Worrell et al. 1991, Plant Cell 3, 1121-1130). Expression of the spinach-leaf SPS gene in Escherichia coli resulted in biological activity, revealed by the presence of SPS activity in extracts and the accumulation of sucrose-6-phosphate and sucrose in the bacteria.


Subject(s)
Glucosyltransferases/genetics , Plants/enzymology , Amino Acid Sequence , Animals , Antibodies/immunology , Base Sequence , Cloning, Molecular , DNA , Escherichia coli , Glucosyltransferases/biosynthesis , Glucosyltransferases/immunology , Glucosyltransferases/isolation & purification , Molecular Sequence Data , Plants/genetics , Rabbits , Sequence Homology, Amino Acid , Zea mays/enzymology
15.
Planta ; 188(3): 314-23, 1992 Oct.
Article in English | MEDLINE | ID: mdl-24178320

ABSTRACT

Mature fruit (kiwifruit) of Actinidia deliciosa var. deliciosa (A. Chev.), (C.F.) Liang and Ferguson cv. Haywood (Chinese gooseberry) were harvested and allowed to ripen in the dark at 20° C. Changes were recorded in metabolites, starch and sugars, adenine nucleotides, respiration, and sucrose and glycolytic enzymes during the initiation of starch degradation, net starch-to-sucrose conversion and the respiratory climacteric. The conversion of starch to sucrose was not accompanied by a consistent increase in hexose-phosphates, and UDP-glucose declined. The activity of sucrose phosphate synthase (SPS) measured with saturating substrate rose soon after harvesting and long before net sucrose synthesis commenced. The onset of sugar accumulation correlated with an increase in SPS activity measured with limiting substrates. Throughout ripening, until sucrose accumulation ceased, feeding [(14)C] glucose led to labelling of sucrose and fructose, providing evidence for a cycle of sucrose synthesis and degradation. It is suggested that activation of SPS, amplified by futile cycles, may regulate the conversion of starch to sugars. The respiratory climacteric was delayed, compared with net starchsugar interconversion, and was accompanied by a general decline of pyruvate and all the glycolytic intermediates except fructose-1,6-bisphosphate. The ATP/ ADP ratio was maintained or even increased. It is argued that the respiratory climacteric cannot be simply a consequence of increased availability of respiratory substrate during starch-sugar conversion, nor can it result from an increased demand for ATP during this process.

16.
Planta ; 188(4): 522-31, 1992 Nov.
Article in English | MEDLINE | ID: mdl-24178384

ABSTRACT

The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a "luxury" additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).

17.
Planta ; 186(1): 58-69, 1991 Dec.
Article in English | MEDLINE | ID: mdl-24186575

ABSTRACT

The inhibition of photosynthesis after supplying glucose to detached leaves of spinach (Spinacia oleracea L.) was used as a model system to search for mechanisms which potentially contribute to the "sink" regulation of photosynthesis. Detached leaves were supplied with 50 mM glucose or water for 7 d through the transpiration stream, holding the leaves in low irradiance (16 µmol photons · m(-2) · s(-1)) and a cycle of 9 h light/15 h darkness to prevent any endogenous accumulation of carbohydrate. Leaves supplied with water only showed marginal changes of photosynthesis, respiration, enzyme levels or metabolites. When leaves were supplied with 50 mM glucose, photosynthesis was gradually inhibited over several days. The inhibition was most marked when photosynthesis was measured in saturating irradiance and ambient CO2, less marked in saturating irradiance and saturating CO2, and least marked in limiting irradiance. There was a gradual loss of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein, fructose-1,6-bisphosphatase, NADP-glyceraldehyde-3-phosphate dehydrogenase and chlorophyll. The inhibition of photosynthesis was accompanied by a large decrease of glycerate-3-phosphate, an increase of triose-phosphates and fructose-1,6-bisphospate, and a small decrease of ribulose-1,5-bisphosphate. The stromal NADPH/NADP ratio increased (as indicated by increased activation of NADP-malate dehydrogenase), and the ATP/ADP ratio increased. Chlorophyll-fluorescence analysis indicated that thylakoid energisation was increased, and that the acceptor side of photosystem II was more reduced. Similar results were obtained when glucose was supplied by floating leaf discs in low irradiance on glucose solution, and when detached spinach leaves were held in high light to produce an endogenous accumulation of carbohydrate. Feeding glucose also led to an increased rate of respiration. This was not accompanied by any changes of pyruvate kinase, phosphofructokinase, or pyrophosphate: fructose-6-phosphate phosphotransferase activity. There was a decrease of phosphoenolpyruvate, glycerate-3-phosphate and glycerate-2-phosphate, an increase of pyruvate and triose-phosphates, and an increased ATP/ADP ratio. These results show (i) that accumulation of carbohydrate can inhibit photosynthesis via a long-term mechanism involving a decrease of Rubisco and other Calvin-cycle enzymes and (ii) that respiration is stimulated due to an unknown mechanism, which increases the utilisation of phosphoenolpyruvate.

18.
Planta ; 183(4): 542-54, 1991 Mar.
Article in English | MEDLINE | ID: mdl-24193848

ABSTRACT

Experiments were carried out to determine how decreased expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) affects photosynthetic metabolism in ambient growth conditions. In a series of tobacco (Nicotiana tabacum L.) plants containing progressively smaller amounts of Rubisco the rate of photosynthesis was measured under conditions similar to those in which the plants had been grown (310 µmol photons · m(-2) · s(-1), 350 µbar CO2, 22° C). (i) There was only a marginal inhibition (6%) of photosynthesis when Rubisco was decreased to about 60% of the amount in the wildtype. The reduced amount of Rubisco was compensated for by an increase in Rubisco activation (rising from 60 to 100%), with minor contributions from an increase of its substrates (ribulose-1,5-bisphosphate and the internal CO2 concentration) and a decrease of its product (glycerate-3-phosphate). (ii) The decreased amount of Rubisco was accompanied by an increased ATP/ADP ratio that may be causally linked to the increased activation of Rubisco. An increase of highenergy-state chlorophyll fluorescence shows that thylakoid membrane energisation and high-energy-state-dependent energy dissipation at photosystem two had also increased. (iii) A further decrease of Rubisco (in the range of 50-20% of the wildtype level) resulted in a strong and proportional inhibition of CO2 assimilation. This was accompanied by a decrease of fructose-1,6-bisphosphatase activity, coupling-factor 1 (CF1)-ATP-synthase protein, NADP-malate dehydrogenase protein, and chlorophyll. The chlorophyll a/b ratio did not change, and enolase and sucrose-phosphate synthase activity did not decrease. It is argued that other photosynthetic enzymes are also decreased once Rubisco decreases to the point at which it becomes strongly limiting for photosynthesis. (iv) It is proposed that the amount of Rubisco in the wildtype represents a balance between the demands of light, water and nitrogen utilisation. The wildtype overinvests about 15% more protein in Rubisco than is needed to avoid a strict Rubisco limitation of photosynthesis. However, this "excess" Rubisco allows the wildtype to operate with lower thylakoid energisation, and decreased high-energy-state-dependent energy dissipation, hence increasing light-use efficiency by about 6%. It also allows the wildtype to operate with a lower internal CO2 concentration in the leaf and a lower stomatal conductance at a given rate of photosynthesis, so that instantaneous water-use efficiency is marginally (8%) increased.

19.
Planta ; 183(4): 555-66, 1991 Mar.
Article in English | MEDLINE | ID: mdl-24193849

ABSTRACT

Transgenic tobacco (Nicotiana tabacum L.) plants transformed with 'antisense' rbcS to produce a series of plants with a progressive decrease in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been used to investigate the contribution of Rubsico to the control of photosynthesis at different irradiance, CO2 concentrations and vapour-pressure deficits. Assimilation rates, transpiration, the internal CO2 concentration and chlorophyll fluorescence were measured in each plant. (i) The flux-control coefficient of Rubisco was estimated from the slope of the plot of Rubisco content versus assimilation rate. The flux-control coefficient had a value of 0.8 or more in high irradiance, (1050 µmol·m(-2)·s(-1)), low-vapour pressure deficit (4 mbar) and ambient CO2 (350 µbar). Control was marginal in enhanced CO2 (450 µbar) or low light (310 µmol·m(-2)·s(-1)) and was also decreased at high vapour-pressure deficit (17 mbar). No control was exerted in 5% CO2. (ii) The flux-control coefficients of Rubisco were compared with the fractional demand placed on the calculated available Rubisco capacity. Only a marginal control on photosynthetic flux is exerted by Rubisco until over 50% of the available capacity is being used. Control increases as utilisation rises to 80%, and approaches unity (i.e. strict limitation) when more than 80% of the available capacity is being used. (iii) In low light, plants with reduced Rubisco have very high energy-dependent quenching of chlorophyll fluorescence (qE) and a decreased apparent quantum yield. It is argued that Rubisco still exerts marginal control in these conditions because decreased Rubisco leads to increased thylakoid energisation and high-energy dependent dissipation of light energy, and lower light-harvesting efficiency. (iv) The flux-control coefficient of stomata for photosynthesis was calculated from the flux-control coefficient of Rubisco and the internal CO2 concentration, by applying the connectivity theorem. Control by the stomata varies between zero and about 0.25. It is increased by increased irradiance, decreased CO2 or decreased vapour-pressure deficit. (v) Photosynthetic oscillations in saturating irradiance and CO2 are suppressed in decreased-activity transformants before the steady-state rate of photosynthesis is affected. This provides direct evidence that these oscillations reveal the presence of "excess" Rubisco. (vi) Comparison of the flux-control coefficients of Rubisco with mechanistic models of photosynthesis provides direct support for the reliability of these models in conditions where Rubisco has a flux-control coefficient approach unity (i.e. "limits" photosynthesis), but also indicates that these models are less useful in conditions where control is shared between Rubisco and other components of the photosynthetic apparatus.

20.
Planta ; 181(4): 583-92, 1990 Jul.
Article in English | MEDLINE | ID: mdl-24196941

ABSTRACT

Experiments were carried out to estimate the elasticity coefficients and thence the distribution of control of sucrose synthesis and photosynthate partitioning between cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase (SPS), by applying the dualmodulation method of Kacser and Burns (1979, Biochem. Soc. Trans. 7, 1149-1161). Leaf discs of spinach (Spinacia oleracea L.) were harvested at the beginning and end of the photoperiod and illuminated at five different irradiances to alter (i) the extent of feedback inhibition and (ii) the rate of photosynthesis. The rate of CO2 fixation, sucrose synthesis and starch synthesis were measured and compared with the activation of SPS, and the levels of fructose-2,6-bisphosphate (Fru2,6bisP) and metabolites. Sucrose synthesis increased progressively with increasing irradiance, accompanied by relatively large changes of SPS activity and Fru2,6bisP, and relatively small changes of metabolites. At each irradiance, leaf discs harvested at the end of the photoperiod had (compared with leaf discs harvested at the beginning of the photoperiod) a decreased rate of sucrose synthesis, increased starch synthesis, decreased SPS activity, increased Fru2,6bisP, a relatively small (20%) increase of most metabolites, no change of the glycerate-3-phosphate: triose-phosphate ratio, a small increase of NADPmalate dehydrogenase activation, but no inhibition of photosynthesis. The changes of sucrose and starch synthesis were largest in low light, while the changes of SPS and Fru2,6bisP were as large, or even larger, in high light. It is discussed how these results provide evidence that the control of sucrose synthesis is shared between SPS and fructose-1,6-bisphosphatase, and provide information about the in-vivo response of these enzymes to changes in the levels of their substrates and effectors. At low fluxes, feedback regulation is very effective at altering partitioning. In high light, changes of SPS activation and Fru2,6bisP can be readily overriden by increasing levels of metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...