Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697118

ABSTRACT

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Subject(s)
B-Lymphocytes , Influenza Vaccines , Single-Cell Analysis , Humans , Influenza Vaccines/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Vaccination , Antibodies, Viral/immunology , Adjuvants, Immunologic , Adjuvants, Vaccine , Monocytes/immunology , Polysorbates , Squalene/immunology , Immunity, Innate/immunology
2.
medRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37090674

ABSTRACT

Advances in multimodal single cell analysis can empower high-resolution dissection of human vaccination responses. The resulting data capture multiple layers of biological variations, including molecular and cellular states, vaccine formulations, inter- and intra-subject differences, and responses unfolding over time. Transforming such data into biological insight remains a major challenge. Here we present a systematic framework applied to multimodal single cell data obtained before and after influenza vaccination without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach pinpoints responses shared across or unique to specific cell types and identifies adjuvant specific signatures, including pro-survival transcriptional states in B lymphocytes that emerged one day after vaccination. We also reveal that high antibody responders to the unadjuvanted vaccine have a distinct baseline involving a rewired network of cell type specific transcriptional states. Remarkably, the status of certain innate immune cells in this network in high responders of the unadjuvanted vaccine appear "naturally adjuvanted": they resemble phenotypes induced early in the same cells only by vaccination with AS03. Furthermore, these cell subsets have elevated frequency in the blood at baseline and increased cell-intrinsic phospho-signaling responses after LPS stimulation ex vivo in high compared to low responders. Our findings identify how variation in the status of multiple immune cell types at baseline may drive robust differences in innate and adaptive responses to vaccination and thus open new avenues for vaccine development and immune response engineering in humans.

3.
JCI Insight ; 3(3)2018 02 08.
Article in English | MEDLINE | ID: mdl-29415894

ABSTRACT

Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.


Subject(s)
Autoimmunity/drug effects , Diabetes Mellitus, Type 1/immunology , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Sulfonylurea Compounds/administration & dosage , Th1 Cells/immunology , Administration, Oral , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Diabetes Mellitus, Type 1/drug therapy , Dinoprostone/immunology , Dinoprostone/metabolism , Disease Models, Animal , Female , Humans , Interleukin-1/immunology , Interleukin-1/metabolism , Mice , Mice, Inbred NOD , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, Prostaglandin E, EP4 Subtype/immunology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Th1 Cells/drug effects , Th1 Cells/metabolism
4.
J Autoimmun ; 90: 39-48, 2018 06.
Article in English | MEDLINE | ID: mdl-29439835

ABSTRACT

Dendritic cell (DC)-mediated T cell tolerance deficiencies contribute to the pathogenesis of autoimmune diseases such as type 1 diabetes. Delivering self-antigen to dendritic-cell inhibitory receptor-2 (DCIR2)+ DCs can delay but not completely block diabetes development in NOD mice. These DCIR2-targeting antibodies induce tolerance via deletion and anergy, but do not increase islet-specific Tregs. Because low-dose IL-2 (LD-IL-2) administration can preferentially expand Tregs, we tested whether delivering islet-antigen to tolerogenic DCIR2+ DCs along with LD-IL-2 would boost islet-specific Tregs and further block autoimmunity. But, surprisingly, adding LD-IL-2 did not increase efficacy of DC-targeted antigen to inhibit diabetes. Here we show the effects of LD-IL-2, with or without antigen delivery to DCIR2+ DCs, on both polyclonal and autoreactive Treg and conventional T cells (Tconv). As expected, LD-IL-2 increased total Tregs, but autoreactive Tregs required both antigen and IL-2 stimulation for optimal expansion. Also, islet-specific Tregs had lower CD25 expression and IL-2 sensitivity, while islet-specific Tconv had higher CD25 expression, compared to polyclonal populations. LD-IL-2 increased activation and expansion of Tconv, and was more pronounced for autoreactive cells after treatment with IL-2 + islet-antigen. Therefore, LD-IL-2 therapy, especially when combined with antigen stimulation, may not optimally activate and expand antigen-specific Tregs in chronic autoimmune settings.


Subject(s)
Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Antigen Presentation , Autoantigens/immunology , Autoimmunity , Cells, Cultured , Female , Humans , Immune Tolerance , Mice , Mice, Inbred NOD , Mice, Transgenic , Receptors, Cell Surface/metabolism
5.
Plant Physiol ; 137(1): 253-62, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15579661

ABSTRACT

Plants derive a number of important secondary metabolites from the amino acid tryptophan (Trp), including the growth regulator indole-3-acetic acid (IAA) and defense compounds against pathogens and herbivores. In previous work, we found that a dominant overexpression allele of the Arabidopsis (Arabidopsis thaliana) Myb transcription factor ATR1, atr1D, activates expression of a Trp synthesis gene as well as the Trp-metabolizing genes CYP79B2, CYP79B3, and CYP83B1, which encode enzymes implicated in production of IAA and indolic glucosinolate (IG) antiherbivore compounds. Here, we show that ATR1 overexpression confers elevated levels of IAA and IGs. In addition, we show that an atr1 loss-of-function mutation impairs expression of IG synthesis genes and confers reduced IG levels. Furthermore, the atr1-defective mutation suppresses Trp gene dysregulation in a cyp83B1 mutant background. Together, this work implicates ATR1 as a key homeostatic regulator of Trp metabolism and suggests that ATR1 can be manipulated to coordinately control the suite of enzymes that synthesize IGs.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Glucosinolates/metabolism , Plant Proteins/physiology , Proto-Oncogene Proteins c-myb/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Homeostasis , Indoleacetic Acids/metabolism , Molecular Structure , Mutation , Phenotype , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Tryptophan/biosynthesis , Tryptophan/chemistry , Up-Regulation
6.
J Biol Chem ; 278(8): 6275-81, 2003 Feb 21.
Article in English | MEDLINE | ID: mdl-12475971

ABSTRACT

Plant mutants with defects in intermediate enzymes of the tryptophan biosynthetic pathway often display a blue fluorescent phenotype. This phenotype results from the accumulation of the fluorescent tryptophan precursor anthranilate, the bulk of which is found in a glucose-conjugated form. To elucidate factors that control fluorescent tryptophan metabolites, we conducted a genetic screen for suppressors of blue fluorescence in the Arabidopsis trp1-100 mutant, which has a defect in the second enzymatic step of the tryptophan pathway. This screen yielded loss-of-function mutations in the UDP-glucosyltransferase gene UGT74F2. The bacterially expressed UGT74F2 enzyme catalyzed a conjugation reaction, with free anthranilate and UDP-glucose as substrates, that yielded the same fluorescent glucose ester compound as extracted from the trp1-100 mutant. These results indicate that sugar conjugation of anthranilate by UGT74F2 allows its stable accumulation in plant tissues. A highly related Arabidopsis enzyme UGT74F1 could also catalyze this reaction in vitro and could complement the ugt74F2 mutation when overexpressed in vivo. However, the UGT74F1 gene is expressed at a lower level than the UGT74F2 gene. Therefore, even though UGT74F1 and UGT74F2 have redundant conjugating activities toward anthranilate, UGT74F2 is the major source of this activity in the plant.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Genes, Plant , Glucose/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Tryptophan , ortho-Aminobenzoates/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Base Sequence , Cloning, Molecular , DNA Primers , Genotype , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...