Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(21): 4777-4781, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26231160

ABSTRACT

In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 µM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described. Key to this development was identification of a 3-substituted spirotetrahydropyran ring that afforded a substantial gain in potency (10 to 35-fold).


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Migraine Disorders/drug therapy , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Animals , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Oxazolidinones/chemical synthesis , Oxazolidinones/chemistry , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 20(8): 2572-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20299218

ABSTRACT

A novel series of potent CGRP receptor antagonists containing a central quinoline ring constraint was identified. The combination of the quinoline constraint with a tricyclic benzimidazolinone left hand fragment produced an analog with picomolar potency (14, CGRP K(i)=23 pM). Further optimization of the tricycle produced a CGRP receptor antagonist that exhibited subnanomolar potency (19, CGRP K(i)=0.52 nM) and displayed a good pharmacokinetic profile in three preclinical species.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Quinolines/pharmacology , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical , Macaca mulatta , Quinolines/chemistry , Quinolines/pharmacokinetics , Rats
3.
ACS Med Chem Lett ; 1(1): 24-9, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-24900170

ABSTRACT

Incorporation of polar functionality into a series of highly potent calcitonin gene-related peptide (CGRP) receptor antagonists was explored in an effort to improve pharmacokinetics. This strategy identified piperazinone analogues that possessed improved solubility at acidic pH and increased oral bioavailability in monkeys. Further optimization led to the discovery of the clinical candidate 2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(2R)-2'-oxo-1,1',2',3-tetrahydrospiro[indene-2,3'-pyrrolo[2,3-b]pyridin]-5-yl]acetamide (MK-3207) (4), the most potent orally active CGRP receptor antagonist described to date.

4.
Bioorg Med Chem Lett ; 19(19): 5787-90, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19703767

ABSTRACT

A novel class of CGRP receptor antagonists was rationally designed by modifying a highly potent, but structurally complex, CGRP receptor antagonist. Initial modifications focused on simplified structures, with increased flexibility. Subsequent to the preparation of a less-potent but more flexible lead, classic medicinal chemistry methods were applied to restore high affinity (compound 22, CGRP Ki=0.035 nM) while maintaining structural diversity relative to the lead. Good selectivity against the closely related adrenomedullin-2 receptor was also achieved.


Subject(s)
Acetamides/chemistry , Calcitonin Gene-Related Peptide Receptor Antagonists , Spiro Compounds/chemistry , Acetamides/chemical synthesis , Acetamides/pharmacology , Animals , Cell Line , Drug Design , Humans , Rats , Receptors, Calcitonin Gene-Related Peptide/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(1): 214-7, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19010673

ABSTRACT

Rational modification of a previously identified spirohydantoin lead structure has identified a series of potent spiroazaoxindole CGRP receptor antagonists. The azaoxindole was found to be a general replacement for the hydantoin that consistently improved in vitro potency. The combination of the indanylspiroazaoxindole and optimized benzimidazolinones led to highly potent antagonists (e.g., 25, CGRP K(i)=40pM). The closely related compound 27 demonstrated good oral bioavailability in dog and rhesus.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Indoles/chemical synthesis , Spiro Compounds/chemical synthesis , Administration, Oral , Animals , Biological Availability , Dogs , Drug Discovery , Humans , Indoles/pharmacology , Macaca mulatta , Oxindoles , Spiro Compounds/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(24): 6165-9, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17027263

ABSTRACT

A rapid analogue approach to identification of spirohydantoin-based CGRP antagonists provided novel, low molecular weight leads. Modification of these leads afforded a series of nanomolar benzimidazolinone-based CGRP receptor antagonists. The oral bioavailability of these antagonists was inversely correlated with polar surface area, suggesting that membrane permeability was a key limitation to absorption. Optimization provided compound 12, a potent CGRP receptor antagonist (K(i)=21nM) with good oral bioavailability in three species.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Hydantoins/pharmacology , Hydantoins/pharmacokinetics , Spiro Compounds/pharmacology , Spiro Compounds/pharmacokinetics , Administration, Oral , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line , Humans , Hydantoins/chemistry , Kidney , Models, Molecular , Molecular Structure , Spiro Compounds/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 16(19): 5052-6, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16889959

ABSTRACT

In our continuing effort to identify CGRP receptor antagonists for the acute treatment of migraine, we have undertaken a study to evaluate alternative 4-substituted piperidines to the lead dihydroquinazolinone 1. In this regard, we have identified the piperidinyl-azabenzimidazolone and phenylimidazolinone structures which, when incorporated into the benzodiazepine core, afford potent CGRP receptor antagonists (e.g., 18 and 29). These studies produced a potent analog (18) which overcomes the instability issues associated with the lead structure 1. A general pharmacophore for the 4-substituted piperidine component of these CGRP receptor antagonists is also presented.


Subject(s)
Benzodiazepines/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Migraine Disorders/drug therapy , Piperidines/pharmacology , Benzodiazepines/chemical synthesis , Cyclic AMP/antagonists & inhibitors , Drug Stability , Humans , Piperidines/chemical synthesis , Protein Binding , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 16(10): 2595-8, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16527483

ABSTRACT

High-throughput screening of the Merck sample collection identified benzodiazepinone tetralin-spirohydantoin 1 as a CGRP receptor antagonist with micromolar activity. Comparing the structure of 1 with those of earlier peptide-based antagonists such as BIBN 4096 BS, a key hydrogen bond donor-acceptor pharmacophore was hypothesized. Subsequent structure activity studies supported this hypothesis and led to benzodiazepinone piperidinyldihydroquinazolinone 7, CGRP receptor K(i)=44nM and IC(50)=38nM. Compound 7 was orally bioavailabile in rats and is a lead in the development of orally bioavailable CGRP antagonists for the treatment of migraine.


Subject(s)
Benzodiazepinones/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Animals , Benzodiazepinones/pharmacokinetics , Biological Availability , Cell Line , Humans , Hydrogen Bonding , Rats , Structure-Activity Relationship
9.
Biochemistry ; 44(27): 9430-40, 2005 Jul 12.
Article in English | MEDLINE | ID: mdl-15996097

ABSTRACT

The type 1 insulin-like growth factor receptor (IGF-1R) is often overexpressed on tumor cells and is believed to play an important role in anchorage-independent proliferation. Additionally, cell culture studies have indicated that IGF-1R confers increased resistance to apoptosis caused by radiation or chemotherapeutic agents. Thus, inhibitors of the intracellular kinase domain of this receptor may have utility for the clinical treatment of cancer. As part of an effort to develop clinically useful inhibitors of IGF-1R kinase, a novel class of pyrrole-5-carboxaldehyde compounds was investigated. The compounds exhibited selectivity against the closely related insulin receptor kinase intrinsically and in cell-based assays. The inhibitors formed a reversible, covalent adduct at the kinase active site, and treatment of such adducts with sodium borohydride irreversibly inactivated the enzyme. Analysis of a tryptic digest of a covalently modified IGF-1R kinase fragment revealed that the active site Lys1003 had been reductively alkylated with the aldehyde inhibitor. Reductive alkylation of the insulin receptor kinase with one of these inhibitors led to a similarly inactivated enzyme which was examined by X-ray crystallography. The crystal structure confirmed the modification of the active site lysine side chain and revealed details of the key interactions between the inhibitor and enzyme.


Subject(s)
Aldehydes/chemistry , Protein Kinase Inhibitors/chemistry , Pyrroles/chemistry , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/chemistry , Aldehydes/metabolism , Amino Acid Sequence , Binding Sites , Borohydrides/chemistry , Cell Line , Crystallography, X-Ray , Enzyme Activation , Humans , Molecular Sequence Data , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphorylation , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Pyrroles/metabolism , Receptor, Insulin/metabolism , Schiff Bases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...