Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 12143, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939855

ABSTRACT

Melioidosis, caused by Burkholderia pseudomallei, is a potentially lethal infection with no licensed vaccine. There is little understanding of why some exposed individuals have no symptoms, while others rapidly progress to sepsis and death, or why diabetes confers increased susceptibility. We prospectively recruited a cohort of 183 acute melioidosis patients and 21 control subjects from Northeast Thailand and studied immune parameters in the context of survival status and the presence or absence of diabetes. HLA-B*46 (one of the commonest HLA class I alleles in SE Asia) and HLA-C*01 were associated with an increased risk of death (odds ratio 2.8 and 3.1 respectively). Transcriptomic analysis during acute infection in diabetics indicated the importance of interplay between immune pathways including those involved in antigen presentation, chemotaxis, innate and adaptive immunity and their regulation. Survival was associated with enhanced T cell immunity to nine of fifteen immunodominant antigens analysed including AhpC (BPSL2096), BopE (BPSS1525), PilO (BPSS1599), ATP binding protein (BPSS1385) and an uncharacterised protein (BPSL2520). T cell immunity to GroEL (BPSL2697) was specifically impaired in diabetic individuals. This characterization of immunity associated with survival during acute infection offers insights into correlates of protection and a foundation for design of an effective multivalent vaccine.


Subject(s)
Burkholderia pseudomallei/immunology , Melioidosis/epidemiology , Melioidosis/immunology , Acute Disease , Adaptive Immunity , Animals , Cohort Studies , Diabetes Complications/epidemiology , Diabetes Complications/immunology , HLA-B Antigens/immunology , HLA-C Antigens/immunology , Humans , Immunity, Cellular , Immunity, Innate , Mice , Survival Analysis , Thailand/epidemiology
2.
PLoS Comput Biol ; 12(3): e1004796, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26953935

ABSTRACT

Activation of CD4+ T cells requires the recognition of peptides that are presented by HLA class II molecules and can be assessed experimentally using the ELISpot assay. However, even given an individual's HLA class II genotype, identifying which class II molecule is responsible for a positive ELISpot response to a given peptide is not trivial. The two main difficulties are the number of HLA class II molecules that can potentially be formed in a single individual (3-14) and the lack of clear peptide binding motifs for class II molecules. Here, we present a Bayesian framework to interpret ELISpot data (BIITE: Bayesian Immunogenicity Inference Tool for ELISpot); specifically BIITE identifies which HLA-II:peptide combination(s) are immunogenic based on cohort ELISpot data. We apply BIITE to two ELISpot datasets and explore the expected performance using simulations. We show this method can reach high accuracies, depending on the cohort size and the success rate of the ELISpot assay within the cohort.


Subject(s)
Computational Biology/methods , Enzyme-Linked Immunospot Assay/methods , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Models, Immunological , Software , Algorithms , Burkholderia pseudomallei/immunology , Computer Simulation , Databases, Factual , Humans , Melioidosis/immunology , Peptides/analysis , Peptides/chemistry , Peptides/immunology
3.
J Neuroinflammation ; 12: 91, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25962509

ABSTRACT

BACKGROUND: Multiple sclerosis is generally considered an autoimmune disease resulting from interaction between predisposing genes and environmental factors, together allowing immunological self-tolerance to be compromised. The precise nature of the environmental inputs has been elusive, infectious agents having received considerable attention. A recent study generated an algorithm predicting naturally occurring T cell receptor (TCR) ligands from the proteome database. Taking the example of a multiple sclerosis patient-derived anti-myelin TCR, the study identified a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens. Having previously generated a spontaneous multiple sclerosis (MS) model through expression of this TCR, we asked whether any of these could indeed function in vivo to trigger CNS disease by cross-reactive activation. FINDINGS: A number of myelin epitope cross-reactive epitopes could stimulate T cell immunity in this MS anti-myelin TCR transgenic model. Two of the most stimulatory of these 'environmental' epitopes, from Dictyostyelium slime mold and from Emiliania huxleyi, were tested for the ability to induce MS-like disease in the transgenics. We found that immunization with cross-reactive peptide from Dictyostyelium slime mold (but not from E. huxleyi) induces severe disease. CONCLUSIONS: These specific environmental epitopes are unlikely to be common triggers of MS, but this study suggests that our search for the cross-reactivity triggers of autoimmune activation leading to MS should encompass epitopes not just from the 'infectome' but also from the full environmental 'exposome.'


Subject(s)
Autoantigens/immunology , Multiple Sclerosis/etiology , Multiple Sclerosis/immunology , Animals , Bacterial Infections/immunology , Disease Models, Animal , Environmental Microbiology , HLA-DR Serological Subtypes/genetics , HLA-DR Serological Subtypes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/pathology , Myelin Basic Protein/metabolism , Pertussis Toxin/toxicity , Protozoan Infections/immunology , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
4.
Am J Respir Crit Care Med ; 191(11): 1250-64, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25789411

ABSTRACT

RATIONALE: Pseudomonas aeruginosa (PA) is an environmental pathogen that commonly infects individuals with cystic fibrosis (CF) and non-CF bronchiectasis, impacting morbidity and mortality. To understand the pathobiology of interactions between the bacterium and host adaptive immunity and to inform rational vaccine design, it is important to understand the adaptive immune correlates of disease. OBJECTIVES: To characterize T-cell immunity to the PA antigen outer membrane porin F (OprF) by analyzing immunodominant epitopes in relation to infection status. METHODS: Patients with non-CF bronchiectasis were stratified by frequency of PA isolation. T-cell IFN-γ immunity to OprF and its immunodominant epitopes was characterized. Patterns of human leukocyte antigen (HLA) restriction of immunodominant epitopes were defined using HLA class II transgenic mice. Immunity was characterized with respect to cytokine and chemokine secretion, antibody response, and T-cell activation transcripts. MEASUREMENTS AND MAIN RESULTS: Patients were stratified according to whether PA was never, sometimes (<50%), or frequently (≥50%) isolated from sputum. Patients with frequent PA sputum-positive isolates were more likely to be infected by mucoid PA, and they showed a narrow T-cell epitope response and a relative reduction in Th1 polarizing transcription factors but enhanced immunity with respect to antibody production, innate cytokines, and chemokines. CONCLUSIONS: We have defined the immunodominant, HLA-restricted T-cell epitopes of OprF. Our observation that chronic infection is associated with a response of narrowed specificity, despite strong innate and antibody immunity, may help to explain susceptibility in these individuals and pave the way for better vaccine design to achieve protective immunity.


Subject(s)
Lung/immunology , Porins/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , T-Lymphocytes/immunology , Adult , Aged , Animals , Female , Humans , Longitudinal Studies , Male , Mice , Middle Aged , Sputum/immunology , Young Adult
5.
Thorax ; 69(4): 335-45, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24258832

ABSTRACT

BACKGROUND: T-cell targeted peptide epitope tolerogens from grass pollen allergens may be useful in treating seasonal allergic rhinitis, but there is urgent need for optimisation of approaches from improved understanding of mechanism. OBJECTIVE: We sought to identify human leukocyte antigen (HLA)-DR1-restricted epitopes from the Timothy grass pollen allergen, Phleum pratense, and characterise T-cell immune regulation following intranasal administration of a single, immunodominant epitope. METHODS: T-cell epitopes within P pratense were identified using HLA-DR1 transgenic mice and tetramer-guided epitope mapping (TGEM) in HLA-DR1-positive individuals with grass allergy. An immunodominant epitope was tested in HLA-DR1 transgenics for impact on responses to whole Phl p5 b or peptide. Microarrays and quantitative PCR were used to characterise T-cell immunity. RESULTS: Peptide 26 (p26) was identified in HLA-DR1 transgenic mice and by TGEM analysis of HLA-DR1-positive individuals with grass allergy. p26 shows promiscuous binding to a wide range of HLA class II alleles, making it of relevance across immunogenetically diverse patients. The epitope is conserved in rye and velvet grass, making it applicable across a spectrum of grass pollen allergy. Intranasal pretreatment of mice with p26 results in significantly reduced T-cell responses. Transcriptomic array analysis in mice showed T-cell regulation in the intranasal treatment group associated with increased expression of members of the Cbl-b and Itch E3 ubiquitin ligase pathway. CONCLUSIONS: We defined an immunodominant P pratense epitope, p26, with broad binding across multiple HLA class II alleles. Intranasal treatment of mice with p26 results in T-cell regulation to whole allergen, involving the Cbl-b and Itch regulatory pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Allergens/immunology , CD4-Positive T-Lymphocytes/immunology , HLA-DR1 Antigen/immunology , Immunodominant Epitopes/immunology , Plant Proteins/immunology , Pollen/immunology , Proto-Oncogene Proteins c-cbl/physiology , Rhinitis, Allergic, Seasonal/immunology , Ubiquitin-Protein Ligases/physiology , Adult , Animals , Female , Humans , Immunity, Cellular , Male , Mice , Mice, Transgenic , Microarray Analysis , Middle Aged , Phleum/immunology , Real-Time Polymerase Chain Reaction , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...