Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L497-L507, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33438509

ABSTRACT

Increasing evidence suggests an important role for deubiquitinating enzymes (DUBs) in modulating a variety of biological functions and diseases. We previously identified the upregulation of the DUB ubiquitin carboxyl terminal hydrolase 1 (UCHL1) in murine ventilator-induced lung injury (VILI). However, the role of UCHL1 in modulating vascular permeability, a cardinal feature of acute lung injury (ALI) in general, remains unclear. We investigated the role of UCHL1 in pulmonary endothelial cell (EC) barrier function in vitro and in vivo and examined the effects of UCHL1 on VE-cadherin and claudin-5 regulation, important adherens and tight junctional components, respectively. Measurements of transendothelial electrical resistance confirmed decreased barrier enhancement induced by hepatocyte growth factor (HGF) and increased thrombin-induced permeability in both UCHL1-silenced ECs and in ECs pretreated with LDN-57444 (LDN), a pharmacological UCHL1 inhibitor. In addition, UCHL1 knockdown (siRNA) was associated with decreased expression of VE-cadherin and claudin-5, whereas silencing of the transcription factor FoxO1 restored claudin-5 levels. Finally, UCHL1 inhibition in vivo via LDN was associated with increased VILI in a murine model. These findings support a prominent functional role of UCHL1 in regulating lung vascular permeability via alterations in adherens and tight junctions and implicate UCHL1 as an important mediator of ALI.


Subject(s)
Capillary Permeability , Endothelium, Vascular/pathology , Ubiquitin Thiolesterase/metabolism , Ventilator-Induced Lung Injury/pathology , Animals , Cells, Cultured , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , In Vitro Techniques , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Oximes/pharmacology , Signal Transduction , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitination , Ventilator-Induced Lung Injury/metabolism
2.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: mdl-33243842

ABSTRACT

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Antibodies, Monoclonal , Humans , Mice , Mice, Inbred C57BL , SARS-CoV-2
3.
Environ Sci Pollut Res Int ; 26(25): 26203-26215, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31286374

ABSTRACT

Mining is known as one of the primary economic activities where exploitation of minerals and other materials have become essential for human development. However, this activity may represent a risk to the environment, starting from deforestation and ending with production of residues that might contain potentially toxic elements. Tailing deposits from historical mining are an example of waste that may represent an environmental concern when abandoned and exposed to environmental conditions. The town of Nacozari de Garcia, in northwestern Mexico, has three abandoned mine tailings (locally known as tailings I, II, and III) located around the urban area that represent important sources of dust and pollution. Images obtained using unmanned aerial vehicles (UAV) in conjunction with geochemical data are used to assess historic erosion calculation and pollution considering contamination and hazard indexes in tailings II and III. Digital elevation models of abandoned tailings were obtained using photogrammetry with UAV. A total of 37 surficial samples were collected from mine tailings to determine elemental concentrations (As, Cu, Pb, W, Zn) using portable X-ray fluorescence. Higher concentrations were found on samples from mine tailing II. Average concentrations followed the decreasing order of Cu > Zn > W > Pb > As for tailing II, whereas decreasing order of Cu > Zn > W > As > Pb was found for tailing III. Contamination Index (CI) values obtained from tailings II and III represent a low potential of pollution, whereas efflorescent crusts from these tailings represent a high potential of polluting soils and sediments by dust generation. Hazard Average Quotient (HAQ) values on both tailings suggest a very high potential of contamination if fluids infiltrate tailings and interact with surficial water and/or groundwater. Obtained surfaces of mine tailings II and III are 146,216 and 216,689 m2, respectively, which represent around 11% of the urbanized area. A loss mass of 321,675 tons was determined for mine tailing II, whereas 634,062 tons for tailing III, accounting for 0.96 million tons of total eroded mass. Since abandonment, calculated erosion rates of 493 t ha-1 year-1 (tailing II) and 232 t ha-1 year-1 (tailing III) are in agreement with those determined in other mining areas. CI and HAQ indexes provide good estimates of pollution associated with abandoned mine tailings from Nacozari de García. Historic erosion determined in these tailings is an environmental concern since eroded material and polluted water have been incorporated into the Moctezuma River, which feeds several villages, whose major activities include agriculture and livestock raising.


Subject(s)
Dust/analysis , Environmental Pollution/analysis , Minerals/analysis , Soil Pollutants/analysis , Agriculture , Humans , Mexico , Mining , Rivers/chemistry
4.
J Am Chem Soc ; 139(22): 7456-7475, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28471683

ABSTRACT

The platelet-derived growth factor receptor ß (PDGFR-ß) signaling pathway is a validated and important target for the treatment of certain malignant and nonmalignant pathologies. We previously identified a G-quadruplex-forming nuclease hypersensitive element (NHE) in the human PDGFR-ß promoter that putatively forms four overlapping G-quadruplexes. Therefore, we further investigated the structures and biological roles of the G-quadruplexes and i-motifs in the PDGFR-ß NHE with the ultimate goal of demonstrating an alternate and effective strategy for molecularly targeting the PDGFR-ß pathway. Significantly, we show that the primary G-quadruplex receptor for repression of PDGFR-ß is the 3'-end G-quadruplex, which has a GGA sequence at the 3'-end. Mutation studies using luciferase reporter plasmids highlight a novel set of G-quadruplex point mutations, some of which seem to provide conflicting results on effects on gene expression, prompting further investigation into the effect of these mutations on the i-motif-forming strand. Herein we characterize the formation of an equilibrium between at least two different i-motifs from the cytosine-rich (C-rich) sequence of the PDGFR-ß NHE. The apparently conflicting mutation results can be rationalized if we take into account the single base point mutation made in a critical cytosine run in the PDGFR-ß NHE that dramatically affects the equilibrium of i-motifs formed from this sequence. We identified a group of ellipticines that targets the G-quadruplexes in the PDGFR-ß promoter, and from this series of compounds, we selected the ellipticine analog GSA1129, which selectively targets the 3'-end G-quadruplex, to shift the dynamic equilibrium in the full-length sequence to favor this structure. We also identified a benzothiophene-2-carboxamide (NSC309874) as a PDGFR-ß i-motif-interactive compound. In vitro, GSA1129 and NSC309874 downregulate PDGFR-ß promoter activity and transcript in the neuroblastoma cell line SK-N-SH at subcytotoxic cell concentrations. GSA1129 also inhibits PDGFR-ß-driven cell proliferation and migration. With an established preclinical murine model of acute lung injury, we demonstrate that GSA1129 attenuates endotoxin-mediated acute lung inflammation. Our studies underscore the importance of considering the effects of point mutations on structure formation from the G- and C-rich sequences and provide further evidence for the involvement of both strands and associated structures in the control of gene expression.


Subject(s)
Amino Acid Motifs , Deoxyribonucleases/chemistry , Drug Delivery Systems , G-Quadruplexes , Receptor, Platelet-Derived Growth Factor beta/chemistry , Base Sequence , Down-Regulation , G-Quadruplexes/drug effects , Gene Regulatory Networks , Humans , Mutation , Promoter Regions, Genetic
5.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L297-L308, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28062482

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a devastating critical illness disproportionately affecting the elderly population, with both higher incidence and mortality. The integrity of the lung endothelial cell (EC) monolayer is critical for preservation of lung function. However, mechanisms mediating EC barrier regulation in the context of aging remain unclear. We assessed the severity of acute lung injury (ALI) in young (2 mo) and aged (18 mo) mice using a two-hit preclinical model. Compared with young cohorts, aged mice exhibited increased ALI severity, with greater vascular permeability characterized by elevated albumin influx and levels of bronchoalveolar lavage (BAL) cells (neutrophils) and protein. Aged/injured mice also demonstrated elevated levels of reactive oxygen species (ROS) in the BAL, which was associated with upregulation of the ROS-generating enzyme, Nox4. We evaluated the role of aging in human lung EC barrier regulation utilizing a cellular model of replicative senescence. Senescent EC populations were defined by increases in ß-galactosidase activity and p16 levels. In response to lipopolysaccharide (LPS) challenge, senescent ECs demonstrate exacerbated permeability responses compared with control "young" ECs. LPS challenge led to a rapid induction of Nox4 expression in both control and senescent ECs, which was posttranslationally mediated via the proteasome/ubiquitin system. However, senescent ECs demonstrated deficient Nox4 ubiquitination, resulting in sustained expression of Nox4 and alterations in cellular redox homeostasis. Pharmacological inhibition of Nox4 in senescent ECs reduced LPS-induced alterations in permeability. These studies provide insight into the roles of Nox4/senescence in EC barrier responses and offer a mechanistic link to the increased incidence and mortality of ARDS associated with aging.


Subject(s)
Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Aging/metabolism , NADPH Oxidases/metabolism , Ubiquitination , Animals , Cell Membrane Permeability/drug effects , Cellular Senescence/drug effects , Disease Susceptibility , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , NADPH Oxidase 4 , Oxidation-Reduction/drug effects , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational/drug effects , Reactive Oxygen Species/metabolism , Ubiquitin/metabolism , Ubiquitination/drug effects
6.
Sci Rep ; 6: 18760, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26729554

ABSTRACT

Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2(+/+) but not in Nrf2(-/-) mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.


Subject(s)
Carotenoids/pharmacology , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Ventilator-Induced Lung Injury/etiology , Ventilator-Induced Lung Injury/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , DNA Damage , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Oxidative Stress , Phosphorylation , Signal Transduction/drug effects , Ubiquitination , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/prevention & control
7.
Sci Rep ; 5: 13135, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26272519

ABSTRACT

Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll-like receptor 4 (TLR4). Computational analysis demonstrated that NAMPT/PBEF and MD-2, a TLR4-binding protein essential for LPS-induced TLR4 activation, share ~30% sequence identity and exhibit striking structural similarity in loop regions critical for MD-2-TLR4 binding. Unlike MD-2, whose TLR4 binding alone is insufficient to initiate TLR4 signaling, NAMPT/PBEF alone produces robust TLR4 activation, likely via a protruding region of NAMPT/PBEF (S402-N412) with structural similarity to LPS. The identification of this unique mode of TLR4 activation by NAMPT/PBEF advances the understanding of innate immunity responses as well as the untoward events associated with mechanical stress-induced lung inflammation.


Subject(s)
Cytokines/chemistry , Cytokines/immunology , NF-kappa B/immunology , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/immunology , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/immunology , Ventilator-Induced Lung Injury/immunology , Animals , Binding Sites , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Chemical , Molecular Docking Simulation , Pneumonia/immunology , Protein Binding , Protein Conformation
8.
Am J Respir Cell Mol Biol ; 52(2): 193-204, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25029266

ABSTRACT

Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1-1 µm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS-derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS-derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Cell-Derived Microparticles/drug effects , Endothelial Cells/drug effects , Endotoxins/pharmacology , Stress, Mechanical , Ventilator-Induced Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Cell-Derived Microparticles/pathology , Cells, Cultured , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Humans , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology
9.
Am J Respir Cell Mol Biol ; 51(5): 660-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24821571

ABSTRACT

Increased nicotinamide phosphoribosyltransferase (NAMPT) transcription is mechanistically linked to ventilator-induced inflammatory lung injury (VILI), with VILI severity attenuated by reduced NAMPT bioavailability. The molecular mechanisms of NAMPT promoter regulation in response to excessive mechanical stress remain poorly understood. The objective of this study was to define the contribution of specific transcription factors, acute respiratory distress syndrome (ARDS)-associated single nucleotide polymorphisms (SNPs), and promoter demethylation to NAMPT transcriptional regulation in response to mechanical stress. In vivo NAMPT protein expression levels were examined in mice exposed to high tidal volume mechanical ventilation. In vitro NAMPT expression levels were examined in human pulmonary artery endothelial cells exposed to 5 or 18% cyclic stretch (CS), with NAMPT promoter activity assessed using NAMPT promoter luciferase reporter constructs with a series of nested deletions. In vitro NAMPT transcriptional regulation was further characterized by measuring luciferase activity, DNA demethylation, and chromatin immunoprecipitation. VILI-challenged mice exhibited significantly increased NAMPT expression in bronchoalveolar lavage leukocytes and in lung endothelium. A mechanical stress-inducible region (MSIR) was identified in the NAMPT promoter from -2,428 to -2,128 bp. This MSIR regulates NAMPT promoter activity, mRNA expression, and signal transducer and activator of transcription 5 (STAT5) binding, which is significantly increased by 18% CS. In addition, NAMPT promoter activity was increased by pharmacologic promoter demethylation and inhibited by STAT5 silencing. ARDS-associated NAMPT promoter SNPs rs59744560 (-948G/T) and rs7789066 (-2,422A/G) each significantly elevated NAMPT promoter activity in response to 18% CS in a STAT5-dependent manner. Our results show that NAMPT is a key novel ARDS therapeutic target and candidate gene with genetic/epigenetic transcriptional regulation in response to excessive mechanical stress.


Subject(s)
Cytokines/genetics , Endothelial Cells/physiology , Nicotinamide Phosphoribosyltransferase/genetics , Respiratory Distress Syndrome/genetics , STAT5 Transcription Factor/metabolism , Tumor Suppressor Proteins/metabolism , 5' Untranslated Regions/genetics , Acute Lung Injury/etiology , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Cells, Cultured , Cytokines/physiology , DNA Methylation/physiology , Disease Models, Animal , Endothelial Cells/cytology , Epigenesis, Genetic/genetics , Gene Expression Regulation/physiology , Genetic Variation/genetics , Humans , Male , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/physiology , Promoter Regions, Genetic/physiology , Pulmonary Artery/cytology , RNA, Small Interfering/genetics , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Stress, Mechanical
10.
Am J Respir Cell Mol Biol ; 51(2): 223-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24588101

ABSTRACT

We previously identified the intracellular nicotinamide phosphoribosyltransferase (iNAMPT, aka pre-B-cell colony enhancing factor) as a candidate gene promoting acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) with circulating nicotinamide phosphoribosyltransferase potently inducing NF-κB signaling in lung endothelium. iNAMPT also synthesizes intracellular nicotinamide adenine dinucleotide (iNAD) in response to extracellular oxidative stress, contributing to the inhibition of apoptosis via ill-defined mechanisms. We now further define the role of iNAMPT activity in the pathogenesis of ARDS/VILI using the selective iNAMPT inhibitor FK-866. C57/B6 mice were exposed to VILI (40 ml/kg, 4 h) or LPS (1.5 mg/kg, 18 h) after osmotic pump delivery of FK-866 (100 mg/kg/d, intraperitoneally). Assessment of total bronchoalveolar lavage (BAL) protein, polymorphonuclear neutrophil (PMN) levels, cytokine levels (TNF-α, IL-6, IL-1α), lung iNAD levels, and injury scores revealed that FK-866-mediated iNAMPT inhibition successfully reduced lung tissue iNAD levels, BAL injury indices, inflammatory cell infiltration, and lung injury scores in LPS- and VILI-exposed mice. FK-866 further increased lung PMN apoptosis, as reflected by caspase-3 activation in BAL PMNs. These findings support iNAMPT inhibition via FK-866 as a novel therapeutic agent for ARDS via enhanced apoptosis in inflammatory PMNs.


Subject(s)
Acrylamides/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lung/drug effects , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Piperidines/pharmacology , Pneumonia/drug therapy , Respiratory Distress Syndrome/drug therapy , Ventilator-Induced Lung Injury/drug therapy , Animals , Apoptosis/drug effects , Bronchoalveolar Lavage Fluid/immunology , Caspase 3/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lung/enzymology , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , NAD/metabolism , Neutrophils/drug effects , Neutrophils/enzymology , Neutrophils/immunology , Nicotinamide Phosphoribosyltransferase/metabolism , Pneumonia/enzymology , Pneumonia/immunology , Pneumonia/pathology , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Ventilator-Induced Lung Injury/enzymology , Ventilator-Induced Lung Injury/immunology , Ventilator-Induced Lung Injury/pathology
11.
Sci Total Environ ; 433: 472-81, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22820616

ABSTRACT

This investigation examines the extent of soil metal pollution associated with the Green Revolution, relative to agricultural activities and associated risks to health in the most important agricultural region of Mexico. Metal contents in bulk soil samples are commonly used to assess contamination, and metal accumulations in soils are usually assumed to increase with decreasing particle size. This study profiled the spatial distribution of metals (Ni, Cr, Pb, Cu, Fe, Cd, V, Hg, Co, P, Se, and Mn) in bulk soil and fine-grained fractions (soil-derived dust) from 22 towns and cities. The contamination of soil was assessed through the use of a geoaccumulation index (Igeo) and pollution index (PI). The results of this study indicated that a number of towns and cities are moderately to highly polluted by soil containing Be, Co, Hg, P, S, V, Zn, Se, Cr, and Pb in both size fractions (coarse and fine). Hazard index in fine fraction (HI(children)=2.1) shows that risk assessment based on Co, Mn, V, and Ni spatially related to power plants, have the potential to pose health risks to local residents, especially children. This study shows that risk assessment based on metal content in bulk soil could be overestimated when compared to fine-grained fraction. Our results provide important information that could be valuable in establishing risk assessment associated with residential soils within agricultural areas, where children can ingest and inhale dust.


Subject(s)
Agriculture , Soil/chemistry , Mexico , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...