Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 30(6): 848-862.e7, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35483363

ABSTRACT

Dietary fibers act through the microbiome to improve cardiovascular health and prevent metabolic disorders and cancer. To understand the health benefits of dietary fiber supplementation, we investigated two popular purified fibers, arabinoxylan (AX) and long-chain inulin (LCI), and a mixture of five fibers. We present multiomic signatures of metabolomics, lipidomics, proteomics, metagenomics, a cytokine panel, and clinical measurements on healthy and insulin-resistant participants. Each fiber is associated with fiber-dependent biochemical and microbial responses. AX consumption associates with a significant reduction in LDL and an increase in bile acids, contributing to its observed cholesterol reduction. LCI is associated with an increase in Bifidobacterium. However, at the highest LCI dose, there is increased inflammation and elevation in the liver enzyme alanine aminotransferase. This study yields insights into the effects of fiber supplementation and the mechanisms behind fiber-induced cholesterol reduction, and it shows effects of individual, purified fibers on the microbiome.


Subject(s)
Dietary Fiber , Inulin , Bifidobacterium , Bile Acids and Salts , Cholesterol , Dietary Fiber/metabolism , Humans , Inulin/metabolism
2.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470399

ABSTRACT

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Subject(s)
Energy Metabolism/physiology , Exercise/physiology , Aged , Biomarkers/metabolism , Female , Humans , Insulin/metabolism , Insulin Resistance , Leukocytes, Mononuclear/metabolism , Longitudinal Studies , Male , Metabolome , Middle Aged , Oxygen/metabolism , Oxygen Consumption , Proteome , Transcriptome
3.
Anal Chem ; 88(22): 11139-11146, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27744677

ABSTRACT

Stable isotope labeling techniques for quantitative top-down proteomics face unique challenges. These include unpredictable mass shifts following isotope labeling, which impedes analysis of unknown proteins and complex mixtures and exponentially greater susceptibility to incomplete isotope incorporation, manifesting as broadening of labeled intact protein peaks. Like popular bottom-up isotope labeling techniques, most top-down labeling methods are restricted to defined media/feed as well as amino acid auxotrophic organisms. We present a labeling method optimized for top-down proteomics that overcomes these challenges. We demonstrated this method through the spiking of 13C-sugar or 2H-water into standard laboratory feedstocks, resulting in tunable intact protein mass increases (TIPMI). After mixing of labeled and unlabeled samples, direct comparison of light and heavy peaks allowed for the relative quantitation of intact proteins in three popular model organisms, including prokaryotic and eukaryotic microorganisms and an animal. This internal standard method proved to be more accurate than label-free quantitation in our hands. Advantages over top-down SILAC include working equally well in nutrient-rich media, conceivably expanding applicability to any organism and all classes of biomolecules, not requiring high-resolving power MS for quantitation and being relatively inexpensive.


Subject(s)
Deuterium/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Sugars/chemistry , Carbon Isotopes , Chromatography, Liquid , Mass Spectrometry , Molecular Weight , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/growth & development
4.
Chem Senses ; 40(8): 577-86, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26377607

ABSTRACT

The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.


Subject(s)
Aspartame/metabolism , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Animals , Aspartame/chemistry , Binding Sites , Dimerization , HEK293 Cells , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Quaternary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Sweetening Agents/chemistry , Taste/physiology
5.
Mol Brain ; 6: 60, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24373546

ABSTRACT

BACKGROUND: Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. RESULTS: Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. CONCLUSIONS: Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides.


Subject(s)
Drosophila melanogaster/metabolism , Neuropeptides/metabolism , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Animals , Confidence Intervals , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Ions , Isotope Labeling , Molecular Sequence Data , Neuropeptides/chemistry , Neuropeptides/isolation & purification , Signal Processing, Computer-Assisted
6.
Chem Senses ; 36(9): 821-30, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21765060

ABSTRACT

Brazzein, a 54 residue sweet-tasting protein, is thought to participate in a multipoint binding interaction with the sweet taste receptor. Proposed sites for interaction with the receptor include 2 surface loops and the disulfide bond that connects the N- and C-termini. However, the importance of each site is not well understood. To characterize the structural role of the termini in the sweetness of brazzein, the position of the disulfide bond connecting the N- and C-termini was shifted by substituting K3-C4-K5 with C3-K4-R5. The apparent affinity and V(max) of the C3-K4-R5-brazzein (CKR-brazzein) variant were only modestly decreased compared with the wild-type (WT) brazzein. We determined a high-resolution structure of CKR-brazzein by nuclear magnetic resonance spectroscopy (backbone root mean square deviation of 0.39 Å). Comparing the structure of CKR-brazzein with that of WT-brazzein revealed that the terminal ß-strands of the variant display extended ß-structure and increased dynamics relative to WT-brazzein. These results support previous mutagenesis studies and further suggest that, whereas interactions involving the termini are necessary for full function of brazzein, the termini do not constitute the primary site of interaction between brazzein and the sweet taste receptor.


Subject(s)
Disulfides/chemistry , Models, Molecular , Plant Proteins/chemistry , Sweetening Agents/chemistry , Taste , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Sweetening Agents/isolation & purification , Sweetening Agents/metabolism
7.
J Mol Biol ; 398(4): 584-99, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20302879

ABSTRACT

The sweet protein brazzein [recombinant protein with sequence identical with the native protein lacking the N-terminal pyroglutamate (the numbering system used has Asp2 as the N-terminal residue)] activates the human sweet receptor, a heterodimeric G-protein-coupled receptor composed of subunits Taste type 1 Receptor 2 (T1R2) and Taste type 1 Receptor 3 (T1R3). In order to elucidate the key amino acid(s) responsible for this interaction, we mutated residues in brazzein and each of the two subunits of the receptor. The effects of brazzein mutations were assayed by a human taste panel and by an in vitro assay involving receptor subunits expressed recombinantly in human embryonic kidney cells; the effects of the receptor mutations were assayed by in vitro assay. We mutated surface residues of brazzein at three putative interaction sites: site 1 (Loop43), site 2 (N- and C-termini and adjacent Glu36, Loop33), and site 3 (Loop9-19). Basic residues in site 1 and acidic residues in site 2 were essential for positive responses from each assay. Mutation of Y39A (site 1) greatly reduced positive responses. A bulky side chain at position 54 (site 2), rather than a side chain with hydrogen-bonding potential, was required for positive responses, as was the presence of the native disulfide bond in Loop9-19 (site 3). Results from mutagenesis and chimeras of the receptor indicated that brazzein interacts with both T1R2 and T1R3 and that the Venus flytrap module of T1R2 is important for brazzein agonism. With one exception, all mutations of receptor residues at putative interaction sites predicted by wedge models failed to yield the expected decrease in brazzein response. The exception, hT1R2 (human T1R2 subunit of the sweet receptor):R217A/hT1R3 (human T1R3 subunit of the sweet receptor), which contained a substitution in lobe 2 at the interface between the two subunits, exhibited a small selective decrease in brazzein activity. However, because the mutation was found to increase the positive cooperativity of binding by multiple ligands proposed to bind both T1R subunits (brazzein, monellin, and sucralose) but not those that bind to a single subunit (neotame and cyclamate), we suggest that this site is involved in subunit-subunit interaction rather than in direct brazzein binding. Results from this study support a multi-point interaction between brazzein and the sweet receptor by some mechanism other than the proposed wedge models.


Subject(s)
Plant Proteins/metabolism , Protein Interaction Mapping , Receptors, G-Protein-Coupled/metabolism , Amino Acid Substitution/genetics , Cell Line , Humans , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Plant Proteins/genetics , Protein Binding , Protein Structure, Quaternary , Receptors, G-Protein-Coupled/genetics
8.
Biophys Chem ; 129(2-3): 242-50, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17611012

ABSTRACT

Detailed knowledge of the pH-dependence in both folded and unfolded states of proteins is essential to understand the role of electrostatics in protein stability. The increasing number of natively disordered proteins constitutes an excellent source for the NMR analysis of pKa values in the unfolded state of proteins. However, the tendency of many natively disordered proteins to aggregate via intermolecular hydrophobic clusters limits their NMR analysis over a wide pH range. To assess whether the pKa values in natively disordered polypeptides can be extrapolated from NMR measurements in the presence of denaturants, the natively disordered backbone of the C-terminal fragment 75 to 105 of Human Thioredoxin was studied. First, assignments using triple resonance experiments were performed to confirm lack of secondary structure. Then the pH-dependence of the amides and carboxylate side chains of Glu residues (Glu88, Glu95, Glu98, and Glu103) in the pH range from 2.0 to 7.0 was monitored using 2D 1H15N HSQC and 3D C(CO)NH experiments, and the behavior of their amides and corresponding carboxyl groups was compared to confirm the absence of nonlocal interactions. Lastly, the effect of increasing dimethyl urea concentration on the pKa values of these Glu residues was monitored. The results indicate that: (i) the dispersion in the pKa of carboxyl groups and the pH midpoints of amides in Glu residues is about 0.5 pH units and 0.6 pH units, respectively; (ii) the backbone amides of the Glu residues exhibit pH midpoints which are within 0.2 pH units from those of their carboxylates; (iii) the addition of denaturant produces upshifts in the pKa values of Glu residues that are nearly independent of their position in the sequence; and (iv) these upshifts show a nonlinear behavior in denaturant concentration, complicating the extrapolation to zero denaturant. Nevertheless, the relative ordering of the pKa values of Glu residues is preserved over the whole range of denaturant concentrations indicating that measurements at high denaturant concentration (e.g. 4 M dimethyl urea) can yield a qualitatively correct ranking of the pKa of these residues in natively disordered proteins whose pH-dependence cannot be monitored directly by NMR.


Subject(s)
Glutamic Acid/chemistry , Models, Chemical , Protein Folding , Proteins/chemistry , Amides/chemistry , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Static Electricity , Thioredoxins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...