Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 86(14): 9540-9551, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34210132

ABSTRACT

The cyclopropane ring-opening reaction of riolozatrione, a natural product obtained from Jatropha dioica, afforded a 2,2-disubstituted 1,3-cyclohexandione displaying an alkyl methyl ether group at position 5. The conformational analysis of this product showed a high preference for the trans-diaxial conformation in both solution and solid state. Such conformation was possible from the noncovalent intramolecular nX → π*C═O interactions (X = an element having an unshared electron pair), allowing the determination of the interaction energies. Since the nX → π*C═O interactions can be regarded as additive, the energy values ranged from 4.52 to 6.51 kcal mol-1 for each carbonyl group with a strong dependency on the interatomic distances. The rigorous analysis of the electron density in the topological theory of atoms in molecules framework clearly shows that the origin of O-C═O interactions are through the nO → π*C═O electron transfer mechanism. Such interactions are slightly weaker than a canonical hydrogen bond but seemingly stronger than a van der Waals interaction. This interaction must be considered as a stereoelectronic effect due the electronic transfer between the interacting groups, which are limited by their relative stereochemistry and can be represented by a bond-no bond interaction, causing the pyramidalization of the carbonyl, which is the charge acceptor group.

2.
Microorganisms ; 7(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861143

ABSTRACT

Micromycetes from unexplored sources represent an opportunity to discover novel natural products to control insect pests. With this aim, a strain of Acremonium masseei CICY026 isolated from a tropical sinkhole was identified, cultured on fermented rice, and its ethyl acetate extract (EAE) was evaluated against three serious phytophagous insects (Bemisia tabaci, Myzus persicae, and Rhopalosiphum padi). DNA from A. masseei CICY026 was used to confirm its identity. EAE caused settling inhibition (SI) of M. persicae and R. padi (67.5% and 75.3%, respectively). Bioassay-guided fractionation of the active EAE led to the isolation of a novel metabolite, named hexahydroacremonintriol (1), and of acremonin A glucoside (2). The structures of 1 and 2 were determined using IR, one- and two-dimensional NMR, HRMS, and confirmed by theoretical data. The aphid M. persicae was noticeably sensitive to 1 and 2 (SI: 55.6% and 67.2%, respectively), whereas R. padi was only slightly affected by 1 (SI: 59%). This new knowledge about mycobiota from these special sinkhole ecosystems will inform the development of new biorational pesticides.

3.
Molecules ; 23(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274324

ABSTRACT

Mechanistic theoretical studies about the feasibility of the traditional proposed mechanism of formation for icetexane diterpene dimer grandione were assessed using density functional method at the M06-2X/6-31G(d,p) level of theory. Bulk water solvent effects were taken into account implicitly using the polarizable continuum model (SCI-PCM). The results were compared with the selectivity found in the biomimetic synthesis performed by experimental research groups. The relative free energy calculation shows that the one-step H-DA formation mechanism nominated in the literature is not a viable mechanism. We found that an alternative competing Tandem pathway is consistent with the experimental trends. Thus, our results suggested that the compound grandione is formed via a H-DA/retro-Claisen rearrangement and not by the traditional H-DA mechanism proposed early in the experimental studies. The H-DA initial step produce a biecyclic adduct followed by a domino retro-Claisen rearrangement that releases the energy strain of the bicyclic intermediary. Steric issues and hyperconjugation interactions are the mainly factors driving the reaction nature and the selectivity in the formation reaction. Finally, the enzymatic assistance for dimer formation was analyzed in terms of the calculated transition state energy barrier.


Subject(s)
Diterpenes/chemistry , Diterpenes/chemical synthesis , Models, Chemical
4.
Molecules ; 21(11)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27869690

ABSTRACT

The biogenetic origin of triterpene dimers from the Celastraceae family has been proposed as assisted hetero-Diels-Alder reaction (HDA). In this work, computational calculation of HDA between natural quinonemethides (tingenone and isopristimerol) and hypothetical orthoquinones has been performed at the M06-2X/6-31G(d) level of theory. We have located all the HDA transition states supporting the biogenetic route via HDA cycloadditions. We found that all reactions take place through a concerted inverse electron demand and asynchronous mechanism. The enzymatic assistance for dimer formation was analyzed in terms of the calculated transition state energy barrier.


Subject(s)
Biosynthetic Pathways , Quinones/metabolism , Triterpenes/metabolism , Cycloaddition Reaction , Models, Biological , Models, Chemical , Plants/metabolism , Quantum Theory
5.
Bioorg Med Chem Lett ; 24(9): 2105-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24709561

ABSTRACT

Four new diterpenes, crossogumerins A-D (1-4) along with six known ones (5-10) were isolated from the root bark of Crossopetalum gaumeri, an endemic medicinal plant from the Yucatan Peninsula. Their structures were elucidated on the basis of 1D and 2D NMR techniques, including HMQC, HMBC, and ROESY experiments. Compounds 1-5, 8-10 were evaluated for cytotoxicity against HeLa (carcinoma of the cervix) and Hep-2 (lung carcinoma) human tumor cells lines and against normal Vero cells (African green monkey kidney) in lag and log phase of growth. Podocarpane diterpenes, crossogumerin B (2) and nimbiol (10), exhibited the highest activity against HeLa cells (IC50 values of 3.1 and 8.1 µM, respectively), but also selectivity on Vero cells (SI 22.6 and 7.5, respectively). The preliminary SAR studies suggest that an epoxy moiety in ring B and a hydrogen bond-donor group strategically positioned in the diterpene core are important requirements for cytotoxicity and selectivity.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Celastraceae/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Chlorocebus aethiops , Diterpenes/isolation & purification , HeLa Cells , Humans , Neoplasms/drug therapy , Plant Roots/chemistry , Vero Cells
6.
Molecules ; 17(4): 4661-71, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22522396

ABSTRACT

The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.


Subject(s)
Ethane/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL