Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 18023, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289298

ABSTRACT

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the required cycles for performance assessment. Even though such a methodology has already been shown to be a promising tool for rubber tree breeding, increased model predictive capabilities and practical application are still needed. Here, we developed a novel machine learning-based approach for predicting rubber tree stem circumference based on molecular markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher accuracies than traditional statistical models in a single-environment scenario. By delivering large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS represents an opportunity to build more robust models and optimize Hevea breeding programs.


Subject(s)
Hevea , Hevea/genetics , Hevea/metabolism , Rubber/metabolism , Plant Breeding , Genomics , Machine Learning
2.
Front Plant Sci ; 12: 668623, 2021.
Article in English | MEDLINE | ID: mdl-34305969

ABSTRACT

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.

3.
JMIR Res Protoc ; 10(6): e26448, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34128820

ABSTRACT

BACKGROUND: A systematic review can be defined as a summary of the evidence found in the literature via a systematic search in the available scientific databases. One of the steps involved is article selection, which is typically a laborious task. Machine learning and artificial intelligence can be important tools in automating this step, thus aiding researchers. OBJECTIVE: The aim of this study is to create models based on an artificial neural network system to automate the article selection process in systematic reviews related to "Mindfulness and Health Promotion." METHODS: The study will be performed using Python programming software. The system will consist of six main steps: (1) data import, (2) exclusion of duplicates, (3) exclusion of non-articles, (4) article reading and model creation using artificial neural network, (5) comparison of the models, and (6) system sharing. We will choose the 10 most relevant systematic reviews published in the fields of "Mindfulness and Health Promotion" and "Orthopedics" (control group) to serve as a test of the effectiveness of the article selection. RESULTS: Data collection will begin in July 2021, with completion scheduled for December 2021, and final publication available in March 2022. CONCLUSIONS: An automated system with a modifiable sensitivity will be created to select scientific articles in systematic review that can be expanded to various fields. We will disseminate our results and models through the "Observatory of Evidence" in public health, an open and online platform that will assist researchers in systematic reviews. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/26448.

SELECTION OF CITATIONS
SEARCH DETAIL
...