Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(12): 5704-5711, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37792431

ABSTRACT

Organic semiconductors can afford detection at wavelengths beyond commercial silicon photodetectors. However, for each targeted near-infrared wavelength range, this requires individually optimized materials, which adds to the complexity and costs. Moreover, finding molecules with strong absorption beyond 1 µm that perform well in organic photodetectors remains a challenge. In microcavity devices, the detection window can be extended to wavelengths inaccessible for silicon without the need for new materials by adopting an intelligent design. Previous work has demonstrated the applicability of a dithienopyrrole-based donor polymer (PDTPQx) in such a cavity photodetector device, with a photoresponse up to 1200 nm. In this work, the π-conjugated backbone of the polymer is extended, affording higher hole mobility and better donor:acceptor intermixing. This leads to enhanced peak external quantum efficiencies up to 1450 nm. The (thermal noise limited) detectivities achieved with the PTTPQx polymer (1.07 × 1012 to 1.82 × 1010 Jones) are among the very best in the 900-1400 nm wavelength regime.

2.
Adv Mater ; 34(21): e2110406, 2022 May.
Article in English | MEDLINE | ID: mdl-35434865

ABSTRACT

Organic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design. Leveraging the infinite possibilities of the organic synthetic toolbox, this perspective highlights several chemical and structural design approaches to modify OMIECs' properties important in device applications such as electronic and ionic conductivity, color, modulus, etc. Additionally, the ability for OMIECs to respond to external stimuli and transduce signals to myriad types of outputs has accelerated their development in smart systems. This perspective further illustrates how various stimuli such as electrical, chemical, and optical inputs fundamentally change OMIECs' properties dynamically and how these changes can be utilized in device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...