Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(6): 1478-1483, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28190634

ABSTRACT

We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.


Subject(s)
Benzoates/chemistry , Benzoates/pharmacology , Drug Discovery , Microsomes/drug effects , Prostaglandin-E Synthases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Microsomes/enzymology , Prostaglandin-E Synthases/chemistry , Rats
2.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002967

ABSTRACT

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Brain/drug effects , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/isolation & purification , Structure-Activity Relationship , Swimming
3.
Bioorg Med Chem Lett ; 26(23): 5663-5668, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27836401

ABSTRACT

Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity in animal models and hold promise as novel therapeutic agents for the treatment of major depressive disorder. Herein we describe our efforts to prepare and optimize a series of conformationally constrained 3,4-disubstituted bicyclo[3.1.0]hexane glutamic acid analogs as orthosteric (glutamate site) mGlu2/3 receptor antagonists. This work led to the discovery of a highly potent and efficacious tool compound 18 (hmGlu2 IC50 46±14.2nM, hmGlu3 IC50=46.1±36.2nM). Compound 18 showed activity in the mouse forced swim test with a minimal effective dose (MED) of 1mg/kg ip. While in rat EEG studies it exhibited wake promoting effects at 3 and 10mg/kg ip without any significant effects on locomotor activity. Compound 18 thus represents a novel tool molecule for studying the impact of blocking mGlu2/3 receptors both in vitro and in vivo.


Subject(s)
Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Glutamic Acid/analogs & derivatives , Glutamic Acid/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/pharmacokinetics , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line , Depressive Disorder, Major/metabolism , Dogs , Glutamic Acid/pharmacokinetics , Haplorhini , Hexanes/chemistry , Hexanes/pharmacokinetics , Hexanes/pharmacology , Humans , Madin Darby Canine Kidney Cells , Mice , Rats , Receptors, Metabotropic Glutamate/metabolism
4.
Bioorg Med Chem Lett ; 26(19): 4824-4828, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27554445

ABSTRACT

Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30µM, and failed to inhibit human mPGES-2 at 62.5µM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Prostaglandin-E Synthases/antagonists & inhibitors , A549 Cells , Animals , Crystallography, X-Ray , Dogs , Humans , Piperidines/pharmacokinetics , Rats , Species Specificity , Structure-Activity Relationship
5.
Neuropharmacology ; 77: 131-44, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24071566

ABSTRACT

Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (t(max): 1-2 h) and good oral bioavailability (F = 25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED50 = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa-agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with pharmacokinetic properties favorable for clinical development and activity in animal models predictive of efficacy in mood and addictive disorders.


Subject(s)
Benzamides/pharmacology , Depression/drug therapy , Narcotic Antagonists/pharmacology , Pyrrolidines/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Reflex, Startle/drug effects , Sensory Gating/drug effects , Analgesia , Animals , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Disease Models, Animal , Ethanol/administration & dosage , Male , Mice , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/therapeutic use , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Self Administration
6.
J Nucl Med ; 54(3): 455-63, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23353688

ABSTRACT

UNLABELLED: Kappa-opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse, and alcoholism. To date, only 1 tracer, the KOR agonist (11)C-GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist (11)C-LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo. METHODS: The in vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabeled ligand in Sprague-Dawley rats and in wild-type and KOR knockout mice, to assess the ligand's potential as a tracer candidate. Imaging experiments with (11)C-LY2795050 in monkeys were performed on the Focus-220 scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis. RESULTS: LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with liquid chromatography-tandem mass spectrometry identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. (11)C-LY2795050 was prepared in an average yield of 12% and greater than 99% radiochemical purity. In rhesus monkeys, (11)C-LY2795050 displayed a moderate rate of peripheral metabolism, with approximately 40% of parent compound remaining at 30 min after injection. In the brain, (11)C-LY2795050 displayed fast uptake kinetics (regional activity peak times of <20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity. Further, specific binding of (11)C-LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner. CONCLUSION: (11)C-LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.


Subject(s)
Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Ligands , Macaca mulatta , Male , Mice , Mice, 129 Strain , Mice, Knockout , Radioligand Assay , Radiopharmaceuticals/chemistry , Rats , Rats, Sprague-Dawley
7.
J Med Chem ; 54(23): 8000-12, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-21958337

ABSTRACT

Arylphenylpyrrolidinylmethylphenoxybenzamides were found to have high affinity and selectivity for κ opioid receptors. On the basis of receptor binding assays in Chinese hamster ovary (CHO) cells expressing cloned human opioid receptors, (S)-3-fluoro-4-(4-((2-(3-fluorophenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (25) had a K(i) = 0.565 nM for κ opioid receptor binding while having a K(i) = 35.8 nM for µ opioid receptors and a K(i) = 211 nM for δ opioid receptor binding. Compound 25 was also a potent antagonist of κ opioid receptors when tested in vitro using a [(35)S]-guanosine 5'O-[3-thiotriphosphate] ([(35)S]GTP-γ-S) functional assay in CHO cells expressing cloned human opioid receptors. Compounds were also evaluated for potential use as receptor occupancy tracers. Tracer evaluation was done in vivo, using liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods, precluding the need for radiolabeling. (S)-3-Chloro-4-(4-((2-(pyridine-3-yl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (18) was found to have favorable properties for a tracer for receptor occupancy, including good specific versus nonspecific binding and good brain uptake.


Subject(s)
Benzamides/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , Benzamides/chemistry , Benzamides/pharmacology , Brain/metabolism , CHO Cells , Chromatography, Liquid , Cricetinae , Cricetulus , HEK293 Cells , Humans , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Radioligand Assay , Rats , Receptors, Opioid, kappa/metabolism , Stereoisomerism , Structure-Activity Relationship , Tandem Mass Spectrometry
8.
Bioorg Med Chem Lett ; 17(24): 6841-6, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17980586

ABSTRACT

A series of 6-bicycloaryloxynicotinamides were identified as opioid receptor antagonists at mu, kappa, and delta receptors. Compounds in the 6-(2,3,4,5-tetrahydro-1H-benzo[c]azepin-7-yloxy)nicotinamide scaffold exhibited potent in vitro functional antagonism at all three receptors.


Subject(s)
Amides/chemistry , Carboxylic Acids/chemistry , Ethers/chemistry , Ethers/pharmacology , Narcotic Antagonists , Acrylic Resins/chemistry , Ethers/chemical synthesis , Molecular Structure , Receptors, Opioid/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 15(17): 3844-8, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-15993591

ABSTRACT

The phenolic hydroxy group of opiate-derived ligands is of known importance for biological activity. We have developed a SAR study around LY255582 by comparing the effect of the hydroxy group in the 2- and 4-position of the phenyl ring. Also, we have proved that the 3-position of the phenyl ring is optimal for opioid activity. Furthermore, we have successfully replaced the hydroxy group in LY255582 by carbamate and carboxamide groups. The new analogs have high affinity for the opioid receptors comparable to the corresponding phenol. Carboxamide analog 12 has an improved metabolism profile and proved to be efficacious in in vivo studies.


Subject(s)
Narcotic Antagonists/chemical synthesis , Piperidines/chemical synthesis , Administration, Oral , Animals , Cyclohexanes , Drug Evaluation, Preclinical , Feeding Behavior/drug effects , Ligands , Liver/metabolism , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/pharmacology , Pain/prevention & control , Phenols , Piperidines/pharmacokinetics , Piperidines/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...