Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Undergrad Neurosci Educ ; 21(2): A133-A141, 2023.
Article in English | MEDLINE | ID: mdl-37588649

ABSTRACT

Undergraduate neuroscience laboratories provide valuable opportunities for students to learn about neurobiological systems through active learning. Caenorhabditis elegans (C. elegans) is a valuable model for teaching students how to use a reductionist approach to neuroscientific inquiry. This series of lab modules trains students to utilize foundational laboratory techniques such as worm handling and maintenance, fluorescence imaging, behavioral assays, and Western blot. Upon completing this series of laboratory exercises, students are well prepared to engage in independent research projects using these research techniques. As supported by student survey results, this series of C. elegans laboratory exercises leads to the development of essential research skills, which students may be able to apply to a wide range of future scientific endeavors.

2.
iScience ; 25(4): 103993, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35340434

ABSTRACT

Adult-born neurons are incorporated into brain circuits in the crayfish Procambarus clarkii, as in many vertebrate and invertebrate species. Adult neurogenesis depends on several conserved features, including the presence of neurogenic niches housing progenitor cells and the expansion, migration, and differentiation of their daughters, the neural precursor cells. However, in contrast to mammalian species, the progenitors initiating the neurogenic lineage in P. clarkii do not undergo long-term self-renewal. A central question is the mode of replenishment of these cells. Experiments have shown that hemocytes generated by the immune system, and not other cell types, are attracted to and incorporated into the niche. The present studies highlight the interdependency of the immune and nervous systems in the generation of adult-born neurons, by demonstrating that hyaline hemocytes are the probable neural progenitor cells, and that serotonin and the cytokine astakine 1 regulate both immune function and adult neurogenesis.

3.
J Undergrad Neurosci Educ ; 17(2): A111-A118, 2019.
Article in English | MEDLINE | ID: mdl-31360126

ABSTRACT

Long-term potentiation (LTP) is thought to be a critical mechanism underlying learning and memory. Although LTP is now widely performed in neuroscience research laboratories and the theory behind it is taught in many undergraduate courses, it is rare for undergraduate students to have the opportunity to perform LTP experiments themselves. Here, we describe a series of two laboratory sessions in which upper level students learn how to perform LTP experiments in acute hippocampal slices from wild type mice. In Laboratory 1, students practice the techniques necessary to set up the experiments. These techniques include making solutions, pulling glass recording electrodes, performing brain removal, preparing hippocampal slices, and positioning electrodes in area CA1. For Laboratory 2, hippocampal slices are prepared in advance by the instructors. Students record LTP by stimulating the Schaffer collateral axons and recording postsynaptic field potential responses in the apical dendritic region of area CA1. Once the students determine appropriate stimulus strength, they collect baseline responses, deliver a tetanic stimulus, and then collect responses 10 and 30 minutes following tetanic stimulation. Students analyze the data in LabChart 7 (ADInstruments - North America, Colorado Springs, CO, 2011) and perform appropriate statistical tests to determine whether potentiation has occurred. These laboratory exercises provide a unique opportunity for students to gain an appreciation for the techniques that are fundamental to studies of neural electrophysiology and plasticity as evidenced through a learning assessment tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...