Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38516936

ABSTRACT

In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halt and the worker bees live for several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having large fat bodies, high expression levels of vitellogenin (a longevity-, nutrition- and immune-related gene), and large provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in autumn (i.e. lower brood area). We examined that theory here by assessing nurse bee physiology in both the summer and autumn, in colonies with varying levels of brood. We found that season is a better predictor of nurse bee physiology than brood area. This suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.


Subject(s)
Social Environment , Vitellogenins , Bees , Animals , Humans , Seasons
2.
J Exp Biol ; 226(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37578032

ABSTRACT

Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat - bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes.


Subject(s)
Hypothermia, Induced , Thermotolerance , Bees , Animals , Food , Feeding Behavior
3.
PLoS One ; 16(9): e0257701, 2021.
Article in English | MEDLINE | ID: mdl-34543363

ABSTRACT

Agriculturally important commercially managed pollinators including honey bees (Apis mellifera L., 1758) and bumble bees (Bombus impatiens Cresson, 1863) rely on the surrounding landscape to fulfill their dietary needs. A previous study in Europe demonstrated that managed honey bee foragers and unmanaged native bumble bee foragers are associated with different land uses. However, it is unclear how response to land use compares between managed honey bees and a managed native bumble bee species in the United States, where honey bees are an imported species. Furthermore, to our knowledge, no such direct comparisons of bee responses to land use have been made at the colony level. To better understand how two different social bees respond to variation in land use, we monitored the weights of A. mellifera and B. impatiens colonies placed in 12 apiaries across a range of land use in Michigan, United States in 2017. Bombus impatiens colonies gained more weight and produced more drones when surrounded by diverse agricultural land (i.e., non-corn/soybean cropland such as tree fruits and grapes), while honey bee colonies gained more weight when surrounded by more grassland/pasture land. These findings add to our understanding of how different bee species respond to agricultural landscapes, highlighting the need for further species-specific land use studies to inform tailored land management.


Subject(s)
Bees , Grassland , Agriculture , Animals , Pollination , Glycine max , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...