Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Cell Stress Chaperones ; 29(1): 51-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38330543

ABSTRACT

The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20-3 and HSP20-6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20-3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20-3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20-3 and HSP20-6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20-3 formed filament-like structures. The particles and filament-like structures formed by HSP20-3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20-3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20-3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20-3 to protein condensate formation.


Subject(s)
Heat-Shock Proteins, Small , Humans , Heat-Shock Proteins, Small/metabolism , Amino Acid Sequence , HSP20 Heat-Shock Proteins/genetics , HSP20 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Heat-Shock Response
2.
Curr Opin Cell Biol ; 86: 102283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989035

ABSTRACT

Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.


Subject(s)
Intermediate Filaments , Intermediate Filaments/chemistry , Vimentin/analysis , Vimentin/metabolism , Oxidation-Reduction
3.
Sci Total Environ ; 902: 165957, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37543314

ABSTRACT

Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.


Subject(s)
Cataract , Chernobyl Nuclear Accident , Crystallins , Animals , Scattering, Small Angle , X-Ray Diffraction , Cataract/etiology , Cataract/veterinary , Cataract/metabolism
4.
BMJ Open Ophthalmol ; 8(1)2023 07.
Article in English | MEDLINE | ID: mdl-37493686

ABSTRACT

BACKGROUND: A five generation family has been analysed by whole exome sequencing (WES) for genetic associations with the multimorbidities of congenital cataract (CC), retinitis pigmentosa (RP) and Crohn's disease (CD). METHODS: WES was performed for unaffected and affected individuals within the family pedigree followed by bioinformatic analyses of these data to identify disease-causing variants with damaging pathogenicity scores. RESULTS: A novel pathogenic missense variant in WFS1: c.1897G>C; p.V633L, a novel pathogenic nonsense variant in RP1: c.6344T>G; p.L2115* and a predicted pathogenic missense variant in NOD2: c.2104C>T; p.R702W are reported. The three variants cosegregated with the phenotypic combinations of autosomal dominant CC, RP and CD within individual family members. CONCLUSIONS: Here, we report multimorbidity in a family pedigree listed on a CC register, which broadens the spectrum of potential cataract associated genes to include both RP1 and NOD2.


Subject(s)
Cataract , Crohn Disease , Retinitis Pigmentosa , Humans , Crohn Disease/genetics , Multimorbidity , Eye Proteins/genetics , Retinitis Pigmentosa/epidemiology , Cataract/epidemiology , Nod2 Signaling Adaptor Protein/genetics , Microtubule-Associated Proteins/genetics
5.
Cells ; 12(12)2023 06 07.
Article in English | MEDLINE | ID: mdl-37371051

ABSTRACT

BACKGROUND: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS: By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS: These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.


Subject(s)
Caspases , Lens, Crystalline , Humans , Caspases/metabolism , Cell Membrane/metabolism , Intermediate Filament Proteins/metabolism , Lens, Crystalline/metabolism , Membranes/metabolism
7.
Adv Redox Res ; 7: None, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38798747

ABSTRACT

Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7ß-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7ß-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.

8.
J Biol Chem ; 298(11): 102537, 2022 11.
Article in English | MEDLINE | ID: mdl-36174677

ABSTRACT

In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.


Subject(s)
Cataract , Crystallins , Lens, Crystalline , Humans , Cataract/metabolism , Crystallins/metabolism , Lens, Crystalline/metabolism , Protein Aggregates , Collagen/metabolism , Aging
9.
Ophthalmic Genet ; 43(5): 622-626, 2022 10.
Article in English | MEDLINE | ID: mdl-35736209

ABSTRACT

BACKGROUND: Genetically determined cataract is both clinically and molecularly highly heterogeneous. Here, we have identified a heterozygous variant in the lens integral membrane protein LIM2, the second most abundant protein in the lens, responsible for congenital sutural/lamellar cataract in a three-generation Japanese family. METHODS: Whole exome sequencing (WES) was undertaken in one affected and one unaffected individual from a family with autosomal dominant congenital cataract to establish the underlying genetic basis. RESULTS: A recurrent missense variant LIM2: c.388C>T; p.R130C was identified and found to co-segregate with disease. In addition, one variant COL11A1:c.3788C>T of unknown significance (VUS) was also identified. CONCLUSIONS: We report a variant in LIM2 causing an isolated autosomal-dominant congenital sutural/lamellar cataract in a Japanese family. This is the first report of a LIM2 variant in the Japanese population. Hence, we expand the mutation spectrum of LIM2 variants in different ethnic groups.


Subject(s)
Cataract , Cataract/congenital , Cataract/genetics , Eye Proteins , Humans , Japan , Membrane Proteins/genetics , Mutation , Pedigree
10.
Exp Eye Res ; 218: 109003, 2022 05.
Article in English | MEDLINE | ID: mdl-35218728

Subject(s)
Lens, Crystalline
11.
Eye (Lond) ; 36(8): 1694-1701, 2022 08.
Article in English | MEDLINE | ID: mdl-34345029

ABSTRACT

BACKGROUND: Lens development is orchestrated by transcription factors. Disease-causing variants in transcription factors and their developmental target genes are associated with congenital cataracts and other eye anomalies. METHODS: Using whole exome sequencing, we identified disease-causing variants in two large British families and one isolated case with autosomal dominant congenital cataract. Bioinformatics analysis confirmed these disease-causing mutations as rare or novel variants, with a moderate to damaging pathogenicity score, with testing for segregation within the families using direct Sanger sequencing. RESULTS: Family A had a missense variant (c.184 G>A; p.V62M) in PAX6 and affected individuals presented with nuclear cataract. Family B had a frameshift variant (c.470-477dup; p.A160R*) in PITX3 that was also associated with nuclear cataract. A recurrent missense variant in HSF4 (c.341 T>C; p.L114P) was associated with congenital cataract in a single isolated case. CONCLUSIONS: We have therefore identified novel variants in PAX6 and PITX3 that cause autosomal dominant congenital cataract.


Subject(s)
Cataract , Heat Shock Transcription Factors , Homeodomain Proteins , PAX6 Transcription Factor , Transcription Factors , Cataract/congenital , Heat Shock Transcription Factors/genetics , Homeodomain Proteins/genetics , Humans , Mutation , PAX6 Transcription Factor/genetics , Pedigree , Transcription Factors/genetics
12.
Ophthalmic Genet ; 43(2): 218-223, 2022 04.
Article in English | MEDLINE | ID: mdl-34748434

ABSTRACT

BACKGROUND: Congenital cataracts are the most common cause of visual impairment worldwide. Inherited cataract is a clinically and genetically heterogeneous disease. Here we report disease-causing variants in a novel gene, CYP21A2, causing autosomal dominant posterior polar cataract. Variants in this gene are known to cause autosomal recessive congenital adrenal hyperplasia (CAH). METHODS: Using whole-exome sequencing (WES), we have identified disease-causing sequence variants in two families of British and Irish origin, and in two isolated cases of Asian-Indian and British origin. Bioinformatics analysis confirmed these variants as rare with damaging pathogenicity scores. Segregation was tested within the families using direct Sanger sequencing. RESULTS: A nonsense variant NM_000500.9 c.955 C > T; p.Q319* was identified in CYP21A2 in two families with posterior polar cataract and in an isolated case with unspecified congenital cataract phenotype. This is the same variant previously linked to CAH and identified as Q318* in the literature. We have also identified a rare missense variant NM_000500.9 c.770 T > C; p.M257T in an isolated case with unspecified congenital cataract phenotype. CONCLUSION: This is the first report of separate sequence variants in CYP21A2 associated with congenital cataract. Our findings extend the genetic basis for congenital cataract and add to the phenotypic spectrum of CYP21A2 variants and particularly the CAH associated Q318* variant. CYP21A2 has a significant role in mineralo- and gluco-corticoid biosynthesis. These findings suggest that CYP21A2 may be important for extra-adrenal biosynthesis of aldosterone and cortisol in the eye lens.


Subject(s)
Adrenal Hyperplasia, Congenital , Cataract , Lens, Crystalline , Female , Humans , Male , Adrenal Hyperplasia, Congenital/genetics , Cataract/congenital , Cataract/genetics , Mutation , Mutation, Missense , Pedigree , Phenotype , Steroid 21-Hydroxylase/genetics
13.
Radiat Res ; 197(1): 1-6, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34788470

ABSTRACT

Recent epidemiological and experimental animal data, as well as reanalyses of data previously accumulated, indicate that the lens of the eye is more radiosensitive than was previously thought. This has resulted in a reduction of the occupational lens dose limit within the European Union countries, Japan and elsewhere. This Commentary introduces the work done by the LDLensRad Consortium contained within this Focus Issue, towards advancement of understanding of the mechanisms of low dose radiation cataract.


Subject(s)
Cataract/ethnology , Lens, Crystalline/radiation effects , Animals , Dose-Response Relationship, Radiation , Europe , Humans , Japan , Mice, Inbred C57BL , Occupational Exposure , Radiation Dosage , Radiation Tolerance
14.
Exp Eye Res ; 213: 108808, 2021 12.
Article in English | MEDLINE | ID: mdl-34762932

ABSTRACT

Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.


Subject(s)
Capsule Opacification/metabolism , Epithelial Cells/physiology , Lens Implantation, Intraocular , Lens, Crystalline/physiology , Regeneration/physiology , Actins/metabolism , Aged , Animals , Aquaporins/metabolism , Cadherins/metabolism , Cell Proliferation/physiology , Epithelial Cells/ultrastructure , Epithelial-Mesenchymal Transition/physiology , Eye Proteins/metabolism , Female , Fibronectins/metabolism , Humans , In Situ Nick-End Labeling , Lens Capsule, Crystalline/cytology , Lens Capsule, Crystalline/surgery , Lens, Crystalline/ultrastructure , Male , Microscopy, Electron , Microscopy, Fluorescence , Models, Animal , Nerve Tissue Proteins/metabolism , Proteomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
15.
Cell Stress Chaperones ; 27(2): 177-188, 2021 03.
Article in English | MEDLINE | ID: mdl-35235182

ABSTRACT

Our cluster analysis of the Cancer Genome Atlas for co-expression of HSP27 and CRYAB in breast cancer patients identified three patient groups based on their expression level combination (high HSP27 + low CRYAB; low HSP27 + high CRYAB; similar HSP27 + CRYAB). Our analyses also suggest that there is a statistically significant inverse relationship between HSP27 and CRYAB and known clinicopathological markers in breast cancer. Screening an unbiased 248 breast cancer patient tissue microarray (TMA) for the protein expression of HSP27 and phosphorylated HSP27 (HSP27-82pS) with CRYAB also identified three patient groups based on HSP27 and CRYAB expression levels. TMA24 also had recorded clinical-pathological parameters, such as ER and PR receptor status, patient survival, and TP53 mutation status. High HSP27 protein levels were significant with ER and PR expression. HSP27-82pS associated with the best patient survival (Log Rank test). High CRYAB expression in combination with wild-type TP53 was significant for patient survival, but a different patient outcome was observed when mutant TP53 was combined with high CRYAB expression. Our data suggest that HSP27 and CRYAB have different epichaperome influences in breast cancer, but more importantly evidence the value of a cluster analysis that considers their coexpression. Our approach can deliver convergence for archival datasets as well as those from recent treatment and patient cohorts and can align HSP27 and CRYAB expression to important clinical-pathological features of breast cancer.


Subject(s)
Breast Neoplasms , Heat-Shock Proteins, Small , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Breast Neoplasms/genetics , Cluster Analysis , Female , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/analysis , Humans , Molecular Chaperones/analysis , alpha-Crystallin B Chain/metabolism
16.
Trends Microbiol ; 29(2): 92-97, 2021 02.
Article in English | MEDLINE | ID: mdl-33288385

ABSTRACT

Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.


Subject(s)
Biomedical Research/organization & administration , COVID-19/virology , SARS-CoV-2/physiology , Communication , Europe , Humans , Laboratory Personnel , Pandemics , SARS-CoV-2/genetics
17.
Orphanet J Rare Dis ; 15(1): 333, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243271

ABSTRACT

BACKGROUND: The crystalline lens is mainly composed of a large family of soluble proteins called the crystallins, which are responsible for its development, growth, transparency and refractive index. Disease-causing sequence variants in the crystallins are responsible for nearly 50% of all non-syndromic inherited congenital cataracts, as well as causing cataract associated with other diseases, including myopathies. To date, more than 300 crystallin sequence variants causing cataract have been identified. METHODS: Here we aimed to identify the genetic basis of disease in five multi-generation British families and five sporadic cases with autosomal dominant congenital cataract using whole exome sequencing, with identified variants validated using Sanger sequencing. Following bioinformatics analysis, rare or novel variants with a moderate to damaging pathogenicity score, were filtered out and tested for segregation within the families. RESULTS: We have identified 10 different heterozygous crystallin variants. Five recurrent variants were found: family-A, with a missense variant (c.145C>T; p.R49C) in CRYAA associated with nuclear cataract; family-B, with a deletion in CRYBA1 (c.272delGAG; p.G91del) associated with nuclear cataract; and family-C, with a truncating variant in CRYGD (c.470G>A; W157*) causing a lamellar phenotype; individuals I and J had variants in CRYGC (c.13A>C; T5P) and in CRYGD (c.418C>T; R140*) causing unspecified congenital cataract and nuclear cataract, respectively. Five novel disease-causing variants were also identified: family D harboured a variant in CRYGC (c.179delG; R60Qfs*) responsible for a nuclear phenotype; family E, harboured a variant in CRYBB1 (c.656G>A; W219*) associated with lamellar cataract; individual F had a variant in CRYGD (c.392G>A; W131*) associated with nuclear cataract; and individuals G and H had variants in CRYAA (c.454delGCC; A152del) and in CRYBB1 (c.618C>A; Y206*) respectively, associated with unspecified congenital cataract. All novel variants were predicted to be pathogenic and to be moderately or highly damaging. CONCLUSIONS: We report five novel variants and five known variants. Some are rare variants that have been reported previously in small ethnic groups but here we extend this to the wider population and record a broader phenotypic spectrum for these variants.


Subject(s)
Cataract , Crystallins/genetics , Lens, Crystalline , Cataract/genetics , DNA Mutational Analysis , Humans , Mutation, Missense/genetics , Pedigree
18.
Sci Rep ; 10(1): 16898, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037268

ABSTRACT

Organ and tissue development are highly coordinated processes; lens growth and functional integration into the eye (emmetropia) is a robust example. An epithelial monolayer covers the anterior hemisphere of the lens, and its organization is the key to lens formation and its optical properties throughout all life stages. To better understand how the epithelium supports lens function, we have developed a novel whole tissue imaging system using conventional confocal light microscopy and a specialized analysis software to produce three-dimensional maps for the epithelium of intact mouse lenses. The open source software package geometrically determines the anterior pole position, the equatorial diameter, and three-dimensional coordinates for each detected cell in the epithelium. The user-friendly cell maps, which retain global lens geometry, allow us to document age-dependent changes in the C57/BL6J mouse lens cell distribution characteristics. We evidence changes in epithelial cell density and distribution in C57/BL6J mice during the establishment of emmetropia between postnatal weeks 4-6. These epithelial changes accompany a previously unknown spheroid to lentoid shape transition of the lens as detected by our analyses. When combined with key findings from previous mouse genetic and cell biological studies, we suggest a cytoskeleton-based mechanism likely underpins these observations.


Subject(s)
Emmetropia/physiology , Epithelial Cells/physiology , Lens, Crystalline/physiology , Animals , Epithelium/physiology , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods
19.
Genes (Basel) ; 11(5)2020 05 06.
Article in English | MEDLINE | ID: mdl-32384692

ABSTRACT

Pediatric cataract is clinically and genetically heterogeneous and is the most common cause of childhood blindness worldwide. In this study, we aimed to identify disease-causing variants in three large British families and one isolated case with autosomal dominant congenital cataract, using whole exome sequencing. We identified four different heterozygous variants, three in the large families and one in the isolated case. Family A, with a novel missense variant (c.178G>C, p.Gly60Arg) in GJA8 with lamellar cataract; family B, with a recurrent variant in GJA8 (c.262C>T, p.Pro88Ser) associated with nuclear cataract; and family C, with a novel variant in GJA3 (c.771dupC, p.Ser258GlnfsTer68) causing a lamellar phenotype. Individual D had a novel variant in GJA3 (c.82G>T, p.Val28Leu) associated with congenital cataract. Each sequence variant was found to co-segregate with disease. Here, we report three novel and one recurrent disease-causing sequence variant in the gap junctional protein encoding genes causing autosomal dominant congenital cataract. Our study further extends the mutation spectrum of these genes and further facilitates clinical diagnosis. A recurrent p.P88S variant in GJA8 causing isolated nuclear cataract provides evidence of further phenotypic heterogeneity associated with this variant.


Subject(s)
Cataract/congenital , Connexins/genetics , Exome Sequencing , Lens, Crystalline/metabolism , Mutation, Missense , Amino Acid Sequence , Animals , Base Sequence , Cataract/genetics , Connexins/chemistry , Exome , Female , Genes, Dominant , Genetic Variation , High-Throughput Nucleotide Sequencing , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid , United Kingdom , Vertebrates/genetics
20.
Elife ; 82019 11 04.
Article in English | MEDLINE | ID: mdl-31682229

ABSTRACT

Alexander disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations in infantile AxD.


Subject(s)
Alexander Disease/metabolism , Biomarkers/metabolism , Caspases/metabolism , Glial Fibrillary Acidic Protein/metabolism , Adult , Alexander Disease/diagnosis , Alexander Disease/genetics , Astrocytes/metabolism , Binding Sites/genetics , Brain/metabolism , Brain/pathology , Cell Line , Glial Fibrillary Acidic Protein/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Intermediate Filaments/metabolism , Mutation , Phosphorylation , Proteolysis , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...