Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
SLAS Discov ; 24(4): 440-456, 2019 04.
Article in English | MEDLINE | ID: mdl-30890054

ABSTRACT

For the past three decades, the pharmaceutical industry has undertaken many diverse approaches to discover novel antibiotics, with limited success. We have witnessed and personally experienced many mistakes, hurdles, and dead ends that have derailed projects and discouraged scientists and business leaders. Of the many factors that affect the outcomes of screening campaigns, a lack of understanding of the properties that drive efflux and permeability requirements across species has been a major barrier for advancing hits to leads. Hits that possess bacterial spectrum have seldom also possessed druglike properties required for developability and safety. Persistence in solving these two key barriers is necessary for the reinvestment into discovering antibacterial agents. This perspective narrates our experience in antibacterial discovery-our lessons learned about antibacterial challenges as well as best practices for screening strategies. One of the tenets that guides us is that drug discovery is a hypothesis-driven science. Application of this principle, at all steps in the antibacterial discovery process, should improve decision making and possibly the odds of what has become, in recent decades, an increasingly challenging endeavor with dwindling success rates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Discovery , High-Throughput Screening Assays , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Structure-Activity Relationship
2.
PLoS One ; 10(8): e0135986, 2015.
Article in English | MEDLINE | ID: mdl-26305471

ABSTRACT

Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.


Subject(s)
Bacterial Toxins/analysis , Biological Assay/methods , Exotoxins/analysis , Staphylococcus aureus/chemistry , Streptococcus pyogenes/chemistry , Biotinylation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Microspheres , Receptors, Antigen, T-Cell, alpha-beta/chemistry
3.
Antimicrob Agents Chemother ; 59(9): 5736-46, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26169403

ABSTRACT

Novel mechanisms of action and new chemical scaffolds are needed to rejuvenate antibacterial drug discovery, and riboswitch regulators of bacterial gene expression are a promising class of targets for the discovery of new leads. Herein, we report the characterization of 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido[3,4-b]quinoxaline-1,3(2H,5H)-dione (5FDQD)-an analog of riboflavin that was designed to bind riboswitches that naturally recognize the essential coenzyme flavin mononucleotide (FMN) and regulate FMN and riboflavin homeostasis. In vitro, 5FDQD and FMN bind to and trigger the function of an FMN riboswitch with equipotent activity. MIC and time-kill studies demonstrated that 5FDQD has potent and rapidly bactericidal activity against Clostridium difficile. In C57BL/6 mice, 5FDQD completely prevented the onset of lethal antibiotic-induced C. difficile infection (CDI). Against a panel of bacteria representative of healthy bowel flora, the antibacterial selectivity of 5FDQD was superior to currently marketed CDI therapeutics, with very little activity against representative strains from the Bacteroides, Lactobacillus, Bifidobacterium, Actinomyces, and Prevotella genera. Accordingly, a single oral dose of 5FDQD caused less alteration of culturable cecal flora in mice than the comparators. Collectively, these data suggest that 5FDQD or closely related analogs could potentially provide a high rate of CDI cure with a low likelihood of infection recurrence. Future studies will seek to assess the role of FMN riboswitch binding to the mechanism of 5FDQD antibacterial action. In aggregate, our results indicate that riboswitch-binding antibacterial compounds can be discovered and optimized to exhibit activity profiles that merit preclinical and clinical development as potential antibacterial therapeutic agents.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cecum/microbiology , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Flavin Mononucleotide/therapeutic use , Flavins/therapeutic use , Animals , Clostridioides difficile/pathogenicity , Female , Mice , Mice, Inbred C57BL , Riboswitch
4.
Bioorg Med Chem Lett ; 22(7): 2536-43, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22401863

ABSTRACT

Lipid A is an essential component of the Gram negative outer membrane, which protects the bacterium from attack of many antibiotics. The Lipid A biosynthesis pathway is essential for Gram negative bacterial growth and is unique to these bacteria. The first committed step in Lipid A biosynthesis is catalysis by LpxC, a zinc dependent deacetylase. We show the design of an LpxC inhibitor utilizing a robust model which directed efficient design of picomolar inhibitors. Analysis of physiochemical properties drove design to focus on an optimal lipophilicity profile. Further structure based design took advantage of a conserved water network over the active site, and with the optimal lipophilicity profile, led to an improved LpxC inhibitor with in vivo activity against wild type Pseudomonas aeruginosa.


Subject(s)
Amidohydrolases/chemistry , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Hydroxamic Acids/chemical synthesis , Pseudomonas aeruginosa/drug effects , Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Catalytic Domain , Drug Design , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Hydroxamic Acids/pharmacology , Lipid A/metabolism , Microbial Sensitivity Tests , Models, Molecular , Protein Binding , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , Water/chemistry
5.
Chem Biol Drug Des ; 78(5): 757-63, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21827632

ABSTRACT

d-boroAla was previously characterized as an inhibitor of bacterial alanine racemase and d-Ala-d-Ala ligase enzymes (Biochemistry, 28, 1989, 3541). In this study, d-boroAla was identified and characterized as an antibacterial agent. d-boroAla has activity against both Gram-positive and Gram-negative organisms, with minimal inhibitory concentrations down to 8 µg / mL. A structure-function study on the alkyl side chain (NH(2) -CHR-B(OR')(2) ) revealed that d-boroAla is the most effective agent in a series including boroGly, d-boroHomoAla, and d-boroVal. l-boroAla was much less active, and N-acetylation completely abolished activity. An LC-MS / MS assay was used to demonstrate that d-boroAla exerts its antibacterial activity by inhibition of d-Ala-d-Ala ligase. d-boroAla is bactericidal at 1× minimal inhibitory concentration against Staphylococcus aureus and Bacillus subtilis, which each encode one copy of d-Ala-d-Ala ligase, and at 4× minimal inhibitory concentration against Escherichia coli and Salmonella enterica serovar Typhimurium, which each encode two copies of d-Ala-d-Ala ligase. d-boroAla demonstrated a frequency of resistance of 8 × 10(-8) at 4× minimal inhibitory concentration in S. aureus. These results demonstrate that d-boroAla has promising antibacterial activity and could serve as the lead agent in a new class of d-Ala-d-Ala ligase targeted antibacterial agents. This study also demonstrates d-boroAla as a possible probe for d-Ala-d-Ala ligase function.


Subject(s)
Alanine/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Boronic Acids/pharmacology , Peptide Synthases/antagonists & inhibitors , Alanine/chemistry , Alanine/pharmacology , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Boronic Acids/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Peptide Synthases/metabolism , Salmonella typhimurium/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
6.
Am J Physiol Endocrinol Metab ; 287(2): E289-96, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15026307

ABSTRACT

Parathyroid hormone (PTH) regulation of matrix metalloproteinase-13 (MMP-13) expression in osteoblasts contributes to normal bone turnover. The PTH response region of the rat MMP-13 gene spans nucleotides (nt) -148 to -38 and supports binding of numerous transcription factors, including Runx2, necessary for osteoblast differentiation, c-Fos/c-Jun, and Ets-1. These trans-acting proteins mediate hormone induction via incompletely defined combinatorial interactions. Within this region, adjacent to the distal Runx2 site, is a homopolymeric(dA:dT) element (-119/-110 nt) that conforms to the consensus site for the novel transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ). This protein regulates bone cell expression of type I collagen and suppresses BMP2-enhanced osteoblast differentiation. The aim of this study was to determine whether Nmp4/CIZ contributes to MMP-13 basal transcription and PTH responsiveness in osteoblasts. Electrophoretic mobility shift analysis confirms Nmp4/CIZ binding within the MMP-13 PTH response region. Mutation of the Nmp4/CIZ element decreases basal activity of an MMP-13 promoter-reporter construct containing the first 1329 nt of the 5'-regulatory region, and overexpression of Nmp4/CIZ protein enhances the activity of the wild-type promoter. The same mutation of the homopolymeric(dA:dT) element enhances the MMP-13 response to PTH and PGE(2). Overexpression of Nmp4/CIZ diminishes hormone induction. Mutation of both the homopolymeric(dA:dT) element and the adjacent Runx2 site further augments the PTH response. On the basis of these data and previous studies, we propose that Nmp4/CIZ is a component of a multiprotein assemblage or enhanceosome within the MMP-13 PTH response region and that, within this context, Nmp4/CIZ promotes both basal expression and hormonal synergy.


Subject(s)
Collagenases/metabolism , Gene Expression Regulation , Nuclear Matrix-Associated Proteins/metabolism , Osteoblasts/metabolism , Parathyroid Hormone/physiology , Trans-Activators/metabolism , Transcription Factors/metabolism , 3T3 Cells , Animals , Collagenases/genetics , Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/physiology , Matrix Metalloproteinase 13 , Mice , Osteoblasts/cytology , Promoter Regions, Genetic , Rats , Response Elements/genetics , Response Elements/physiology , Transcription, Genetic/physiology , Tumor Cells, Cultured , Zinc Fingers/physiology
7.
Semin Nephrol ; 24(1): 25-38, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14730507

ABSTRACT

The relationship between bone and the kidney in renal osteodystrophy is a complex interplay of kidney to bone connections, bone to kidney connections, and cell to cell connections. In addition, such interactions have a profound effect on the vasculature. In this review, we discuss the role of the bone morphogenetic proteins (BMPs) in the skeleton, kidney, and vasculature. In addition, we propose that deficiencies of these BMPs seen in chronic kidney disease (CKD) result in decreased bone remodeling and a compensatory secondary hyperparathyroidism (high turnover state). Treatment of the hyperparathyroidism blocks this compensatory arm and thus decreased bone remodeling occurs (low turnover). We review animal models of CKD in which treatment with BMP-7 resulted in normalization of both high and low turnover states. Finally, we discuss vascular calcification as it relates to bone metabolism. We discuss the roles of BMP-7 and 2 other bone regulatory proteins, osteoprotegerin (OPG) and alpha2-HS glycoprotein (AHSG, human fetuin), in the human vasculature and their implications for vascular calcification.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Bone Remodeling/physiology , Cell Communication/physiology , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Glycoproteins/metabolism , Kidney/metabolism , Parathyroid Hormone/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Humans , Muscle, Smooth, Vascular/metabolism , Osteoprotegerin , Receptors, Tumor Necrosis Factor
8.
Eukaryot Cell ; 1(6): 1010-20, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12477801

ABSTRACT

Eukaryotic mRNAs are modified at the 5' end with a cap structure. In fungal cells, the formation of the mRNA cap structure is catalyzed by three enzymes: triphosphatase, guanylyltransferase, and methyltransferase. Fungal capping enzymes have been proposed to be good antifungal targets because they differ significantly from their human counterparts and the genes encoding these enzymes are essential in Saccharomyces cerevisiae. In the present study, Candida albicans null mutants were constructed for both the mRNA triphosphatase-encoding gene (CET1) and the mRNA methyltransferase encoding gene (CCM1), proving that these genes are not essential in C. albicans. Heterozygous deletions were generated, but no null mutants were isolated for the guanylyltransferase-encoding gene (CGT1), indicating that this gene probably is essential in C. albicans. Whereas these results indicate that Cet1p and Ccm1p are not ideal molecular targets for development of anticandidal drugs, they do raise questions about the capping of mRNA and translation initiation in this fungus. Southern blot analysis of genomic DNA indicates that there are not redundant genes for CET1 and CCM1 and analysis of mRNA cap structures indicate there are not alternative pathways compensating for the function of CET1 or CCM1 in the null mutants. Instead, it appears that C. albicans can survive with modified mRNA cap structures.


Subject(s)
Candida albicans/genetics , RNA Caps , Acid Anhydride Hydrolases/metabolism , Alleles , Blotting, Southern , Candida albicans/physiology , Chromatography, Thin Layer , DNA/metabolism , Gene Deletion , Methyltransferases/metabolism , Models, Genetic , Nucleotidyltransferases/metabolism , Polymerase Chain Reaction , RNA/metabolism , RNA, Messenger/metabolism , Time Factors
9.
Cell Transplant ; 11(3): 261-4, 2002.
Article in English | MEDLINE | ID: mdl-12075991

ABSTRACT

Rare cells are present in human umbilical cord blood that do not express the hematopoietic marker CD45 and in culture do not produce cells of hematopoietic lineage. These umbilical cord multipotent stem cells (UC-MC) behave as multilineage progenitor cells (stem cells) and can be expanded in tissue culture. Exposure to basic fibroblast growth factor (bFGF) and human epidermal growth factor (hEGF) for a minimum of 7 days in culture induces expression of neural and glial markers. Western immunoblots demonstrate expression of both beta-tubulin III and glial fibrillary acidic protein (GFAP). Immunocytochemistry of the cells showed intense labeling to both compounds on the intracellular cytoskeleton. The oligodendrocyte cell surface marker galactocerebroside (Gal-C) was present on most cells. Many cells show dual labeling, expressing both neuronal and glial markers.


Subject(s)
Cell Differentiation , Fetal Blood/cytology , Multipotent Stem Cells/physiology , Neuroglia/metabolism , Neurons/metabolism , Animals , Biomarkers , Cell Culture Techniques/methods , Cell Lineage , Cells, Cultured , Epidermal Growth Factor/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Humans , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Nerve Growth Factor/pharmacology , Neuroglia/chemistry , Neurons/chemistry , Tubulin/metabolism
10.
Cell Transplant ; 11(3): 261-264, 2002 Apr.
Article in English | MEDLINE | ID: mdl-28858600

ABSTRACT

Rare cells are present in human umbilical cord blood that do not express the hematopoietic marker CD45 and in culture do not produce cells of hematopoietic lineage. These umbilical cord multipotent stem cells (UC-MC) behave as multilineage progenitor cells (stem cells) and can be expanded in tissue culture. Exposure to basic fibroblast growth factor (bFGF) and human epidermal growth factor (hEGF) for a minimum of 7 days in culture induces expression of neural and glial markers. Western immunoblots demonstrate expression of both ß-tubulin III and glial fibrillary acidic protein (GFAP). Immunocytochemistry of the cells showed intense labeling to both compounds on the intracellular cytoskeleton. The oligodendrocyte cell surface marker galactocerebroside (Gal-C) was present on most cells. Many cells show dual labeling, expressing both neuronal and glial markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...