Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dev Cell ; 57(22): 2517-2532.e6, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36347256

ABSTRACT

Endocardial cells lining the heart lumen are coronary vessel progenitors during embryogenesis. Re-igniting this developmental process in adults could regenerate blood vessels lost during cardiac injury, but this requires additional knowledge of molecular mechanisms. Here, we use mouse genetics and scRNA-seq to identify regulators of endocardial angiogenesis and precisely assess the role of CXCL12/CXCR4 signaling. Time-specific lineage tracing demonstrated that endocardial cells differentiated into coronary endothelial cells primarily at mid-gestation. A new mouse line reporting CXCR4 activity-along with cell-specific gene deletions-demonstrated it was specifically required for artery morphogenesis rather than angiogenesis. Integrating scRNA-seq data of endocardial-derived coronary vessels from mid- and late-gestation identified a Bmp2-expressing transitioning population specific to mid-gestation. Bmp2 stimulated endocardial angiogenesis in vitro and in injured neonatal mouse hearts. Our data demonstrate how understanding the molecular mechanisms underlying endocardial angiogenesis can identify new potential therapeutic targets promoting revascularization of the injured heart.


Subject(s)
Coronary Vessels , Endocardium , Animals , Female , Mice , Pregnancy , Bone Morphogenetic Protein 2 , Cell Differentiation , Endothelial Cells , Heart , Organogenesis
2.
Reprod Sci ; 29(1): 122-132, 2022 01.
Article in English | MEDLINE | ID: mdl-34755321

ABSTRACT

Adequate corpus luteum (CL) function is paramount to successful pregnancy. Structural and functional CL integrity is controlled by diverse cell types that contribute and respond to the local cytokine milieu. The chemokine ligand 12 (CXCL12) and receptor, CXCR4, are modulators of inflammation and cell survival, but little is understood about CXCL12-CXCR4 axis and CL functional regulation. Corpora lutea from control nonpregnant ewes (n = 5; day 10 estrous cycle (D10C)) and pregnant ewes (n = 5/day) on days 20 (D20P) and 30 (D30P) post-breeding were analyzed for gene and protein expression of CXCL12, CXCR4, and select inflammatory cytokines. In separate cell culture studies, cytokine production was evaluated following CXCL12 treatment. Abundance of CXCL12 and CXCR4 increased (P < 0.05) in pregnant ewes compared to nonpregnant ewes, as determined by a combination of quantitative PCR, immunoblot, and immunofluorescence microscopy. CXCR4 was detected in steroidogenic and nonsteroidogenic cells in ovine CL, and select pro-inflammatory mediators were greater in CL from pregnant ewes. In vitro studies revealed greater abundance of tumor necrosis factor (TNF) following CXCL12 administration (P = 0.05), while P4 levels in cell media were unchanged. Fully functional CL of pregnant ewes is characterized by increased abundance of inflammatory cytokines which may function in a luteotropic manner. We report concurrent increases in CXCL12, CXCR4, and select inflammatory mediators in ovine CL as early pregnancy progresses. We propose CXCL12 stimulates production of select cytokines, rather than P4 in the CL to assist in CL establishment and survival.


Subject(s)
Chemokine CXCL12/metabolism , Corpus Luteum/metabolism , Embryo Implantation/physiology , Inflammation/metabolism , Animals , Cell Survival/physiology , Female , Granulosa Cells/metabolism , Placenta/metabolism , Pregnancy , Progesterone/metabolism , Sheep
3.
Biol Reprod ; 105(4): 876-891, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34104954

ABSTRACT

Adrenomedullin (ADM) is an evolutionarily conserved multifunctional peptide hormone that regulates implantation, embryo spacing, and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, the expression of CALCRL, RAMP2, and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation, and placentation in pigs.


Subject(s)
Adrenomedullin/genetics , Embryo, Mammalian/metabolism , Receptors, Adrenomedullin/genetics , Sus scrofa/genetics , Uterus/metabolism , Adrenomedullin/metabolism , Animals , Female , Receptors, Adrenomedullin/immunology , Spatio-Temporal Analysis , Sus scrofa/embryology
4.
Biol Reprod ; 104(2): 468-478, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33141178

ABSTRACT

Early pregnancy features complex signaling between fetal trophoblast cells and maternal endometrium directing major peri-implantation events including localized inflammation and remodeling to establish proper placental development. Proinflammatory mediators are important for conceptus attachment, but a more precise understanding of molecular pathways regulating this process is needed to understand how the endometrium becomes receptive to implantation. Both chemokine ligand 12 (CXCL12) and its receptor CXCR4 are expressed by fetal and maternal tissues. We identified this pair as a critical driver of placental angiogenesis, but their additional importance to inflammation and trophoblast cell survival, proliferation, and invasion imply a role in syncytia formation at the fetal-maternal microenvironment. We hypothesized that CXCL12 encourages both endometrial inflammation and conceptus attachment during implantation. We employed separate ovine studies to (1) characterize endometrial inflammation during early gestation in the ewe, and (2) establish functional implications of CXCL12 at the fetal-maternal interface through targeted intrauterine infusion of the CXCR4 inhibitor AMD3100. Endometrial tissues were evaluated for inflammatory mediators, intracellular signaling events, endometrial modifications, and trophoblast syncytialization using western blotting and immunohistochemistry. Endometrial tissue from ewes receiving CXCR4 inhibitor demonstrated dysregulated inflammation and reduced AKT and NFKB, paired with elevated autophagic activity compared to control. Immunohistochemical observation revealed an impairment in endometrial surface remodeling and diminished trophoblast syncytialization following localized CXCR4 inhibition. These data suggest CXCL12-CXCR4 regulates endometrial inflammation and remodeling for embryonic implantation, and provide insight regarding mechanisms that, when dysregulated, lead to pregnancy pathologies such as intrauterine growth restriction and preeclampsia.


Subject(s)
Inflammation/veterinary , Maternal-Fetal Exchange/physiology , Pregnancy, Animal , Receptors, CXCR4/metabolism , Sheep/physiology , Animals , Cells, Cultured , Endometrium/metabolism , Female , Inflammation/metabolism , Placentation/physiology , Pregnancy , Pregnancy, Animal/physiology , Receptors, CXCR4/genetics , Signal Transduction/physiology
5.
Placenta ; 95: 18-25, 2020 06.
Article in English | MEDLINE | ID: mdl-32452398

ABSTRACT

Establishment of immune cell populations and adaptations in immune cells are critical aspects during pregnancy that lead to protection of the semi-allogenic fetus. Appropriate immune cell activation and trophoblast migration are regulated in part by chemokines, the availability of which can be fine-tuned by decoy receptors. Atypical chemokine receptor 3 (ACKR3), previously named C-X-C chemokine receptor 7 (CXCR7), is a chemokine decoy receptor expressed in placenta, but little is known about how this receptor affects placental development. In this study, we investigated the phenotypic characteristics of placentas from Ackr3-/- embryos to determine how Ackr3 contributes to early placentation. In placentas from Ackr3-/- embryos, we observed an increase in decidual compaction and in the size of the uterine natural killer cell population. Ackr3 knockdown in trophoblast cells led to a decrease in trophoblast migration. These findings suggest that this decoy receptor may therefore be an important factor in normal placentation.


Subject(s)
Dendritic Cells/cytology , Endometrium/cytology , Killer Cells, Natural/cytology , Placenta/cytology , Receptors, CXCR/metabolism , Animals , Cell Line , Cell Movement/physiology , Dendritic Cells/metabolism , Endometrium/metabolism , Female , Killer Cells, Natural/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Knockout , Placenta/metabolism , Placentation/physiology , Pregnancy , Receptors, CXCR/genetics , Trophoblasts/cytology , Trophoblasts/metabolism
6.
Mol Cell Endocrinol ; 501: 110644, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31738970

ABSTRACT

Successful embryo implantation is a complex and highly regulated process involving precise synchronization between the fetal-derived trophoblast cells and maternal uterine luminal epithelium. Multiple endocrine-driven factors are important for controlling the timely receptivity of the uterus, and this complexity underscores implantation failure as a major cause of recurrent infertility associated with assisted reproductive technologies. One particular cellular structure often hypothesized to promote receptivity is the pinopode or uterodome - a hormonally regulated, large cellular protrusion on the uterine epithelial surface. Recent clinical studies associate pinopodes with favorable fertility outcomes in women, and because they are directly linked to an increase in progesterone levels, the potential utility of these hormone-regulated cell biological structures in predicting or improving implantation in a clinical setting holds promise. In this review, we aim to generate interest in pinopodes from the broader cell biology and endocrinology communities, re-examine methodologies in pinopode research, and identify priorities for future investigation of pinopode structure and function in women's reproductive health.


Subject(s)
Endometrium/cytology , Epithelium/physiology , Uterus/cytology , Animals , Endometrium/metabolism , Epithelium/metabolism , Female , Fertility/physiology , Hormones/metabolism , Humans , Trophoblasts/cytology , Uterus/metabolism
7.
Am J Reprod Immunol ; 82(5): e13181, 2019 11.
Article in English | MEDLINE | ID: mdl-31420980

ABSTRACT

PROBLEM: Chemokines help coordinate inflammation within the fetal-maternal microenvironment during gestation. The chemokine CXCL12 signaling through its receptor CXCR4 regulates inflammatory activity, but this phenomenon is not well understood during pregnancy, and there are no reports exploring the role of this pair in peripheral immune tolerance during gestation. Herein, we hypothesize that intrauterine CXCL12-CXCR4 signaling governs local and systemic immunomodulatory dynamics during early gestation in ewes. METHOD OF STUDY: Osmotic pumps were surgically installed for intrauterine infusion of a CXCR4 inhibitor, AMD3100, beginning on day 12 post-breeding in sheep. Endometrial tissues were collected on day 35 of gestation and evaluated for inflammatory potential, Akt pathway activation, and autophagy induction. Demonstrative of peripheral immune activity, levels of select cytokines were assessed in daily blood samples collected throughout the study, as well as in corpus luteum and spleen on day 35. RESULTS: Anti-inflammatory IL10 was primarily localized to endometrial glandular epithelium with lower abundance when CXCR4 was antagonized. Inhibition of CXCR4 at the fetal-maternal interface resulted in less activation of Akt in endometrium, while evidence of autophagy induction was greater. Corpora lutea from ewes receiving intrauterine AMD3100 exhibited lower interferon-gamma (IFNG) expression. Blood inflammatory potential was differentially altered in a temporal fashion throughout infusion. IL10 abundance in spleen was greater following CXCR4 inhibition at the fetal-maternal interface, while IFNG was less. CONCLUSION: Intrauterine CXCL12-CXCR4 signaling governs endometrial and systemic inflammation; disruption of this axis may have detrimental impacts on offspring and maternal health.


Subject(s)
Endometrium/immunology , Maternal-Fetal Exchange/immunology , Pregnancy Complications/immunology , Receptors, CXCR4/immunology , Signal Transduction/immunology , Animals , Chemokine CXCL12/immunology , Endometrium/pathology , Female , Inflammation/immunology , Inflammation/pathology , Pregnancy , Pregnancy Complications/pathology , Sheep
8.
Biol Reprod ; 101(1): 102-111, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31004477

ABSTRACT

Placenta development is characterized by extensive angiogenesis and vascularization but if these processes are compromised placental dysfunction occurs, which is the underlying cause of pregnancy complications such as preeclampsia and intrauterine growth restriction. Dysregulation of placental angiogenesis has emerged as one of the main pathophysiological features in the development of placental insufficiency and its clinical consequences. The signaling axis initiated by chemokine ligand 12 (CXCL12) and its receptor CXCR4 stimulates angiogenesis in other tissues, and may be central to placental vascularization. We hypothesized that CXCL12-CXCR4 signaling governs the pro-angiogenic placental microenvironment by coordinating production of central angiogenic factors and receptors and regulates endometrial cell survival essential for placental function and subsequent fetal longevity. The CXCR4 antagonist, AMD3100, was used to elucidate the role of CXCL12-CXCR4 signaling regarding uteroplacental vascular remodeling at the fetal-maternal interface. On day 12 postbreeding, osmotic pumps were surgically installed and delivered either AMD3100 or PBS into the uterine lumen ipsilateral to the corpus luteum. On day 20, endometrial tissues were collected, snap-frozen in liquid nitrogen, and uterine horn cross sections preserved for immunofluorescent analysis. In endometrium from ewes receiving AMD3100 infusion, the abundance of select angiogenic factors was diminished, while presence of CD34+ cells increased compared to control ewes. Ewes receiving AMD3100 infusion also exhibited less activation of Akt/mTOR signaling, and elevated LC3B-II, a marker of cellular autophagy in endometrium. This study suggests that CXCL12-CXCR4 signaling governs placental homeostasis by serving as a critical upstream mediator of vascularization and cell viability, thereby ensuring appropriate placental development.


Subject(s)
Autophagy/physiology , Endometrium/physiology , Maternal-Fetal Exchange , Neovascularization, Physiologic , Receptors, CXCR4/metabolism , Animals , Antigens, CD34/metabolism , Cells, Cultured , Endometrium/cytology , Endometrium/metabolism , Female , Male , Placenta/blood supply , Placenta/metabolism , Placentation/physiology , Pregnancy , Sheep , Signal Transduction/physiology
9.
Nature ; 559(7714): 356-362, 2018 07.
Article in English | MEDLINE | ID: mdl-29973725

ABSTRACT

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.


Subject(s)
Arteries/cytology , Coronary Vessels/cytology , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Veins/cytology , Animals , Arteries/metabolism , COUP Transcription Factor II/metabolism , Cell Cycle/genetics , Cell Differentiation , Cell Lineage , Coronary Vessels/metabolism , Female , Male , Mice , Sequence Analysis, RNA , Veins/metabolism
10.
Fertil Steril ; 109(6): 1072-1078, 2018 06.
Article in English | MEDLINE | ID: mdl-29871794

ABSTRACT

OBJECTIVE: To test adrenomedullin (Adm, ADM) as a downstream target of signal transducer and activator of transcription 3 (STAT3) in endometrial cells and to test midregional proadrenomedullin (MR-proADM) as a biomarker of endometriosis. DESIGN: Cross-sectional analysis of Adm expression in eutopic endometrium and of MR-proADM in plasma from women with and without endometriosis; and prospective study of MR-proADM levels in women with endometriosis undergoing surgical resection of ectopic lesions. SETTING: Academic medical centers. PATIENT(S): Fifteen patients with endometriosis and 11 healthy control subjects who donated eutopic endometrial biopsies; and 28 patients with endometriosis and 19 healthy control subjects who donated plasma for MR-proADM analysis. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Adm mRNA levels according to quantitative real-time polymerase chain reaction after activation of STAT3 by interleukin-6 (IL-6) in Ishikawa cells; immunohistochemistry for ADM in eutopic endometrial biopsies from women with endometriosis compared with healthy donors; and MR-proADM levels measured by commercial immunoassay in plasma from healthy women and women with endometriosis who subsequently underwent surgical resection of ectopic lesions. RESULT(S): Activation of STAT3 by IL-6 up-regulated Adm mRNA expression in Ishikawa cells. ADM protein levels were elevated in the eutopic endometrium of women with endometriosis. MR-proADM concentrations were higher in women with endometriosis but were not correlated with disease stage, corrected by surgery, or predictive of fertility outcome. CONCLUSION(S): MR-proADM may be able to serve as a biomarker of endometriosis, but it is unknown whether elevated MR-proADM levels are secondary to the estrogenic and inflammatory properties of endometriosis or an inciting pathogenic factor.


Subject(s)
Adrenomedullin/metabolism , Endometriosis/metabolism , Endometrium/metabolism , Uterine Diseases/metabolism , Adrenomedullin/blood , Adrenomedullin/genetics , Adult , Biomarkers/analysis , Biomarkers/blood , Biomarkers/metabolism , Blood Chemical Analysis , Case-Control Studies , Cells, Cultured , Cross-Sectional Studies , Endometriosis/blood , Endometriosis/genetics , Endometriosis/pathology , Endometrium/pathology , Female , Humans , Immunohistochemistry , Protein Precursors/blood , Protein Precursors/genetics , Protein Precursors/metabolism , Up-Regulation , Uterine Diseases/blood , Uterine Diseases/genetics , Uterine Diseases/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...