Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Auton Autacoid Pharmacol ; 26(4): 335-44, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16968472

ABSTRACT

The aim of this study was to characterize the effects of 4-methylthioamphetamine (4-MTA) on contractility and noradrenaline (NA) transport and release in the isolated rat aorta. Descending thoracic aortic rings were isolated from male Wistar rats (220-240 g) and the effect of 4-MTA on contractility was measured by isometric force displacement. 4-MTA (0.1 microm-1 mm) induced a concentration-dependent contraction of aortic rings, with a pD(2) of 4.40 +/- 0.38, and an E(max) of 0.80 +/- 0.05 g tension. The alpha(1)-adrenoceptor antagonist, prazosin (1 microm) and alpha(2) antagonist, yohimbine (1 microm) inhibited maximal contraction to 100 microm 4-MTA by 45.0 +/- 6.7% and 53.5 +/- 7.1% of control values respectively, whereas the 5-hydroxytryptamine (5-HT) antagonist, ketanserin (100 nm) had no effect on the 4-MTA-mediated contraction. The specific NA transport inhibitor, nisoxetine (1 microm) abolished contraction of the aorta by 4-MTA. 4 Nisoxetine-sensitive [(3)H]-NA transport in aortic rings was measured over a concentration range of 0-5 microm [(3)H]-NA, and had a maximal rate of transport (V(max)) of 0.77 +/- 0.07 pmol [(3)H]-NA min(-1) mg(-1) protein and a Michaelis affinity constant (K(M)) of 2.3 +/- 0.5 microm. 4-MTA inhibited nisoxetine-sensitive [(3)H]-NA transport with a pIC(50) of 6.16 +/- 0.18 and the pIC(50) for inhibition of nisoxetine-sensitive [(3)H]-NA transport by 3,4-methylenedioxymethamphetamine (MDMA) was 6.83 +/- 0.13. 4-MTA (1-100 microm) significantly stimulated release of pre-loaded [(3)H]-NA from aortic rings and 4-MTA-induced [(3)H]-NA release was inhibited by 1 microm nisoxetine. These data suggest that 4-MTA causes contraction of the rat aorta in vitro by a mechanism that is consistent with an ability to cause release of NA at the level of the NA transporter. It is concluded that 4-MTA has the potential to increase the extracellular concentration of NA peripherally as well as centrally, and that this may cause adverse cardiovascular effects in its users.


Subject(s)
Amphetamines/pharmacology , Aorta, Thoracic/drug effects , Norepinephrine/metabolism , Vasoconstriction/drug effects , Adrenergic Uptake Inhibitors/pharmacology , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiology , Biological Transport/drug effects , Brain/cytology , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , In Vitro Techniques , Male , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Norepinephrine/antagonists & inhibitors , Rats , Rats, Wistar , Synaptosomes/drug effects , Synaptosomes/metabolism , Tritium
2.
J Biomol Screen ; 5(4): 213-26, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10992042

ABSTRACT

The transition from manual to robotic high throughput screening (HTS) in the last few years has made it feasible to screen hundreds of thousands of chemical entities against a biological target in less than a month. This rate of HTS has increased the visibility of bottlenecks, one of which is assay optimization. In many organizations, experimental methods are generated by therapeutic teams associated with specific targets and passed on to the HTS group. The resulting assays frequently need to be further optimized to withstand the rigors and time frames inherent in robotic handling. Issues such as protein aggregation, ligand instability, and cellular viability are common variables in the optimization process. The availability of robotics capable of performing rapid random access tasks has made it possible to design optimization experiments that would be either very difficult or impossible for a person to carry out. Our approach to reducing the assay optimization bottleneck has been to unify the highly specific fields of statistics, biochemistry, and robotics. The product of these endeavors is a process we have named automated assay optimization (AAO). This has enabled us to determine final optimized assay conditions, which are often a composite of variables that we would not have arrived at by examining each variable independently. We have applied this approach to both radioligand binding and enzymatic assays and have realized benefits in both time and performance that we would not have predicted a priori. The fully developed AAO process encompasses the ability to download information to a robot and have liquid handling methods automatically created. This evolution in smart robotics has proven to be an invaluable tool for maintaining high-quality data in the context of increasing HTS demands.


Subject(s)
Drug Evaluation, Preclinical/methods , Robotics , Automation , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...