Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 6: 409-415, 2019.
Article in English | MEDLINE | ID: mdl-31080749

ABSTRACT

The real-time improvement of the intraoperative discrimination between different tissue types (particularly between tumor and adjacent normal tissue) using intraoperative imaging represents a considerable advance for oncology surgeons. However, the development of imaging agents is much slower than that of drug therapies, although surgery represents one of the few curative treatments for many solid tumors. SGM-101 is a recently described, innovative antibody conjugate in which the near-infrared fluorochrome BM-104 is covalently linked to a chimeric monoclonal antibody against carcinoembryonic antigen (CEA). SGM-101 was developed with the goal of providing oncology surgeons with an intraoperative imaging tool that allows the visualization of CEA-overexpressing tumors. This antigen is overexpressed in a wide range of human carcinomas, such as colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Here we characterized SGM-101 safety prior to its clinical testing for real-time cancer mapping by oncology surgeons. Safety pharmacology and toxicology studies were performed after intravenous injection of SGM-101 in Wistar rats and in Beagle dogs. SGM-101 metabolism and pharmacokinetics were analyzed in rats and mice. Finally, the potential toxicity of the BM-104 dye and SGM-101 cross-reactivity were assessed in a panel of 42 human tissues. Our pre-clinical toxicology, pharmacology and pharmacokinetic results demonstrated the absence of significant adverse effects of both SGM-101 and BM-104 at doses well above the anticipated maximal human exposure. Taken together, the results of the pharmacology, pharmacokinetic and toxicology studies support the development of SGM-101 as a potentially useful and safe tumor-specific imaging tool that might improve the complete tumor resection rate.

2.
Clin Cancer Res ; 14(7): 2145-53, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18381956

ABSTRACT

PURPOSE: Irinotecan is a prodrug converted to the active cytotoxic molecule SN38 predominantly by the action of liver carboxylesterases. The efficacy of irinotecan is limited by this hepatic activation that results in a low conversion rate, high interpatient variability, and dose-limiting gastrointestinal toxicity. The purpose of this study was to evaluate a novel peptidic prodrug of SN38 (DTS-108) developed to bypass this hepatic activation and thus reduce the gastrointestinal toxicity and interpatient variability compared with irinotecan. EXPERIMENTAL DESIGN: SN38 was conjugated to a cationic peptide (Vectocell) via an esterase cleavable linker. The preclinical development plan consisted of toxicity and efficacy evaluation in a number of different models and species. RESULTS: The conjugate (DTS-108) is highly soluble, with a human plasma half-life of 400 minutes in vitro. Studies in the dog showed that DTS-108 liberates significantly higher levels of free SN38 than irinotecan without causing gastrointestinal toxicity. In addition, the ratio of the inactive SN38-glucuronide metabolite compared with the active SN38 metabolite is significantly lower following DTS-108 administration, compared with irinotecan, which is consistent with reduced hepatic metabolism. In vivo efficacy studies showed that DTS-108 has improved activity compared with irinotecan. A significant dose-dependent antitumoral efficacy was observed in all models tested and DTS-108 showed synergistic effects in combination with other clinically relevant therapeutic agents. CONCLUSIONS: DTS-108 is able to deliver significantly higher levels of SN38 than irinotecan, without the associated toxicity of irinotecan, resulting in an increased therapeutic window for DTS-108 in preclinical models. These encouraging data merit further preclinical and clinical investigation.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/analogs & derivatives , Drug Carriers , Neoplasms, Experimental/drug therapy , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Camptothecin/chemical synthesis , Camptothecin/chemistry , Camptothecin/metabolism , Camptothecin/pharmacology , Cations , Dogs , Humans , Irinotecan , Prodrugs/chemical synthesis , Prodrugs/metabolism , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 14(4): 1258-65, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18281561

ABSTRACT

PURPOSE: There is a clear clinical need for cytotoxic drugs with a lower systemic toxicity. DTS-201 (CPI-0004Na) is a peptidic prodrug of doxorubicin that shows an improved therapeutic index in experimental models. The purpose of the current study was to complete its preclinical characterization before initiation of phase I clinical trials. EXPERIMENTAL DESIGN: The preclinical development program consisted of a detailed assessment of the general and cardiac toxicity profiles of DTS-201 in mice, rats, and dogs, together with mass balance and antitumoral efficacy studies in rodents. Neprilysin and thimet oligopeptidase expression, two enzymatic activators of DTS-201, was also characterized in human breast and prostate tumor biopsies. RESULTS: The target organs of DTS-201 toxicity in rodents and dogs are typically those of doxorubicin, albeit at much higher doses. Importantly, chronic treatment with DTS-201 proved to be significantly less cardiotoxic than with doxorubicin at doses up to 8-fold higher in rats. The mass balance study showed that [14C] DTS-201 does not accumulate in the body after intravenous administration. The improved therapeutic index of DTS-201 compared with free doxorubicin was confirmed in three tumor xenograft models of prostate, breast, and lung cancer. Neprilysin and/or thimet oligopeptidase are expressed in all experimental human tumor types thus far tested as well as in a large majority of human breast and prostate tumor biopsies. CONCLUSION: DTS-201 gave promising results in terms of general toxicity, cardiovascular tolerance, and in vivo efficacy in xenograft mouse models compared with free doxorubicin. Taken together, these results and the confirmation of the presence of activating enzymes in human tumor biopsies provide a strong rationale for a phase I clinical study in cancer patients.


Subject(s)
Doxorubicin/analogs & derivatives , Doxorubicin/metabolism , Neoplasms, Experimental/drug therapy , Oligopeptides/pharmacology , Prodrugs/pharmacology , Animals , Breast Neoplasms/enzymology , Cell Line, Tumor , Dogs , Doxorubicin/pharmacology , Female , Humans , Male , Metalloendopeptidases/biosynthesis , Mice , Neprilysin/biosynthesis , Prostatic Neoplasms/enzymology , Rats , Xenograft Model Antitumor Assays
4.
J Med Chem ; 49(23): 6908-16, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154520

ABSTRACT

Improvement in the therapeutic index of doxorubicin, a cytotoxic molecule, has been sought through its chemical conjugation to short (15-23 amino acid) peptide sequences called Vectocell peptides. Vectocell peptides are highly charged drug delivery peptides and display a number of characteristics that make them attractive candidates to minimize many of the limitations observed for a broad range of cytotoxic molecules. The studies reported here characterized the in vitro and in vivo efficacy of a range of Vectocell peptides conjugated to doxorubicin through different linkers. These studies show that the in vivo therapeutic index of doxorubicin can be improved by conjugation with a specific Vectocell peptide (DPV1047) through an ester linker to C14 of doxorubicin, in both colon and breast tumor models. This conjugate was also shown to have significant in vivo antitumoral activity in a model resistant to doxorubicin, suggesting that this conjugate is able to circumvent the multidrug resistance (MDR) phenotype. These experiments therefore provide support for the use of the Vectocell technology with other cytotoxic agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Doxorubicin/chemistry , Peptides/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Humans , Mice , Neoplasm Transplantation , Structure-Activity Relationship , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...