Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 135(12): 3060-3067, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26203639

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human C7 (rhC7) purified from human dermal fibroblasts (FB-rhC7), we showed previously that intravenously injected rhC7 distributed to engrafted RDEB skin, incorporated into its dermal-epidermal junction (DEJ), and reversed the RDEB disease phenotype. Human dermal fibroblasts, however, are not used for commercial production of therapeutic proteins. Therefore, we generated rhC7 from Chinese hamster ovary (CHO) cells. The CHO-derived recombinant type VII collagen (CHO-rhC7), similar to FB-rhC7, was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. CHO-rhC7 bound to fibronectin and promoted human keratinocyte migration in vitro. A single dose of CHO-rhC7, administered intravenously into new-born C7-null RDEB mice, incorporated into the DEJ of multiple skin sites, tongue and esophagus, restored anchoring fibrils, improved dermal-epidermal adherence, and increased the animals' life span. Furthermore, no circulating or tissue-bound anti-C7 antibodies were observed in the mice. These data demonstrate the efficacy of CHO-rhC7 in a preclinical murine model of RDEB.


Subject(s)
Collagen Type VII/therapeutic use , Epidermolysis Bullosa Dystrophica/drug therapy , Animals , Animals, Newborn , CHO Cells , Cell Movement/drug effects , Cells, Cultured , Collagen Type VII/administration & dosage , Collagen Type VII/chemistry , Collagen Type VII/immunology , Cricetulus , Humans , Injections, Intravenous , Phenotype , Recombinant Proteins/therapeutic use
2.
J Chromatogr A ; 1069(1): 53-64, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15844483

ABSTRACT

The packing characteristics of process-scale chromatography columns were evaluated using the responses to conductivity-based pulse and step inputs derived from tracer experiments and in-process transitions (i.e. column equilibration and regeneration steps). Characteristics of the measured residence time distributions (RTDs) were quantified by statistical moments and using the equations derived from the Gaussian model. The first and second moments calculated from in-process step transitions for multiple runs were in good agreement with those moments calculated from the pulse-input experiments conducted immediately after column packing. This indicates that most of the time the bed behavior at the time of packing is consistent with that at the time of operation. Due to the significant resistance to protein mass transfer inside the particles, estimated plate heights for protein solutes are expected to be much greater than those observed from the experiments using saltbased tracers. Thus, the column efficiency derived from salt-based experiments can be a useful measure of packing consistency rather than a significant parameter influencing the outcome of protein separations.


Subject(s)
Chromatography/instrumentation
3.
J Chromatogr A ; 989(1): 139-53, 2003 Mar 07.
Article in English | MEDLINE | ID: mdl-12641290

ABSTRACT

In process-scale antibody purification, protein-A affinity chromatography is commonly used as the initial purification step. In this paper, two different protein-A media were evaluated. These adsorbents have a porous glass backbone with different pore sizes: 700 A and 1000 A. Adsorption equilibrium data of human immunoglobulins on these media were measured via a batch technique and correlated using the Langmuir isotherm model. A larger static capacity was found for the smaller pore size material, which is probably a result of the larger specific surface area and associated higher ligand concentration. The protein uptake kinetics were also obtained via a stirred tank experiment using different initial protein concentrations. A surface layer model was used to represent the protein uptake by the media and to estimate values of a concentration-independent effective diffusivity within the particle. Experimental breakthrough curves were also obtained from packed beds operated under different conditions. Calculated breakthrough profiles were found to be in good agreement with the experimental results. Experimental breakthrough data were used to determine the dependence of the dynamic capacity of the media as a function of the fluid residence time. A larger dynamic capacity was also found for the smaller pore size media. The permeability of large scale packed beds was also reported and used in conjunction with the dynamic capacity to calculate the process production rate.


Subject(s)
Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...