Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 152(3): 698-706, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34910189

ABSTRACT

BACKGROUND: Sunflower is a promising protein source but data on amino acid (AA) digestibility are lacking in humans. Classically, the determination of AA digestibility requires ileal digesta sampling. The dual isotope method is minimally invasive but has not been compared to the conventional approach. OBJECTIVES: This study aimed to determine the true ileal digestibility of sunflower AAs in healthy volunteers who ate biscuits containing 15nitrogen (N) protein isolate, in comparison with the dual isotope method. METHODS: Twelve healthy volunteers (men and women; 40.4 ± 10.5 years old; BMI, 23.7 ± 2.9 kg/m2) were equipped with a naso-ileal tube. For 4 hours, they consumed 9 repeated meals comprising 15N-sunflower protein biscuits together with 13carbon (C)-AAs, carried either in chocolate (SUN + Ch; n = 7) or apple puree (SUN + P; n = 5). Ileal digesta and blood were sampled throughout 8 hours after ingestion of the first meal. The 15N and 13C AA enrichments were measured in digesta to determine ileal digestibility directly and in plasma to determine lysine and threonine digestibility using the dual isotope method. Differences between methods and between vector groups were analyzed using paired and unpaired t-tests, respectively. RESULTS: The ileal digestibility of sunflower indispensable AAs (IAA) was 89% ± 5.3%, with threonine and lysine having the lowest digestibility. In the SUN + Ch meal, IAA digestibility was 3% below that of SUN + P (P < 0.05). The mean free 13C-AA ileal digestibility was 98.1% ± 0.9%. No matter which matrix was used to carry 13C-AAs, plasma 15N and 13C-AA kinetics displayed a 1-hour offset. Digestibility obtained with the dual isotope method (70.4% ± 6.0% for threonine and 75.9% ± 22.3% for lysine) was below the target values. CONCLUSIONS: The ileal digestibility of IAAs from a sunflower isolate incorporated in a biscuit was close to 90% in healthy adults. Under our experimental conditions, the dual isotope method provided lower values than the usual method. Further protocol developments are needed to validate the equivalence between both methods. This trial was registered at clinicaltrials.gov as NCT04024605.


Subject(s)
Amino Acids , Helianthus , Adult , Amino Acids/metabolism , Animal Feed , Digestion , Female , Helianthus/metabolism , Humans , Ileum/metabolism , Lysine/metabolism , Male , Middle Aged , Nitrogen Isotopes/metabolism , Threonine
2.
J Nutr ; 150(3): 450-457, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31825068

ABSTRACT

BACKGROUND: In the context of developing plant protein sources for humans, sunflower is a good candidate in its form as an oilseed coproduct. OBJECTIVES: We aimed to compare the real digestibility in rats of a sunflower isolate to that of goat whey protein. We also studied the efficiency of 15N and 2H intrinsic labeling in this assessment. METHODS: Sunflower seeds and goat milk were labeled with 15N and 2H. Male Wistar rats (10 wk old) were fed a meal containing 12% of either sunflower isolate (n = 8) or whey (n = 8). Six hours after meal ingestion, protein and amino acid digestibility were assessed by measuring nitrogen, hydrogen, and amino acids in the digesta, as well as isotope enrichments in the bulk and individual amino acids. The differences between groups and isotopes were respectively tested with an unpaired and a paired t test. RESULTS: Protein isolate purity was 87% for whey and 94% for sunflower. 2H and 15N enrichments were, respectively, 0.12 atom % (AP) and 1.06 AP in sunflower isolate and 0.18 AP and 0.95 AP in whey. Fecal 15N protein digestibility was 97.2 ± 0.2% for whey and 95.1 ± 0.5% for sunflower isolate. The use of 2H resulted in a lower digestibility estimate than 15N for whey (96.9 ± 0.2%, P < 0.05) and sunflower (94.2 ± 0.5%, P < 0.01). For both isotopes, protein digestibility was about 2% higher for whey than for sunflower isolate. Mean 15N amino acid caecal digestibility was 97.5 ± 0.2% for whey and 96.3 ± 0.2% for sunflower isolate. The values obtained with 15N and 2H resulted in significant differences ranging from -0.1% to 3.5%. The DIAAS was >1.0 for whey and 0.84 for sunflower (lysine). CONCLUSIONS: The protein and amino acid digestibility of sunflower isolate was high but its DIAAS reflected a moderate lysine imbalance. Despite slight differences with 15N, deuterium produced comparable results, making it suitable for in vivo digestion studies.


Subject(s)
Amino Acids/metabolism , Deuterium/metabolism , Dietary Proteins/metabolism , Digestion , Helianthus/metabolism , Nitrogen Isotopes/metabolism , Plant Proteins/metabolism , Whey/metabolism , Animals , Goats , Male , Rats , Rats, Wistar
3.
J Am Oil Chem Soc ; 94(4): 619-630, 2017.
Article in English | MEDLINE | ID: mdl-28392576

ABSTRACT

Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was performed with pancreatic proteases to represent in vitro protein digestibility. Increasing the toasting time of RSM linearly decreased the rate of protein hydrolysis of RSM and the insoluble protein fractions. The extent of hydrolysis was, on average, 44% higher for the insoluble compared with the soluble protein fraction. In contrast, the rate of protein hydrolysis of the soluble protein fraction was 3-9-fold higher than that of the insoluble protein fraction. The rate of hydrolysis of the insoluble protein fraction linearly decreased by more than 60% when comparing the untoasted to the 120 min toasted RSM. Increasing the toasting time elicited the formation of Maillard reaction products (furosine, Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine) and disulfide bonds in the insoluble protein fraction, which is proposed to explain the reduction in the hydrolysis rate of this fraction. Overall, longer toasting times increased the size of the peptides resulting after hydrolysis of the RSM and the insoluble protein fraction. The hydrolysis kinetics of the soluble and insoluble protein fractions and the proportion of soluble:insoluble proteins in the RSM explain the reduction in the rate of protein hydrolysis observed in the RSM with increasing toasting time.

4.
Article in English | MEDLINE | ID: mdl-27777764

ABSTRACT

BACKGROUND: Toasting during the production of rapeseed meal (RSM) decreases ileal crude protein (CP) and amino acid (AA) digestibility. The mechanisms that determine the decrease in digestibility have not been fully elucidated. A high protein quality, low-denatured, RSM was produced and toasted up to 120 min, with samples taken every 20 min. The aim of this study was to characterize secondary structure and chemical changes of proteins and glucosinolates occurring during toasting of RSM and the effects on its in vitro CP digestibility. RESULTS: The decrease in protein solubility and the increase of intermolecular ß-sheets with increasing toasting time were indications of protein aggregation. The contents of NDF and ADIN increased with increasing toasting time. Contents of arginine, lysine and O-methylisourea reactive lysine (OMIU-RL) linearly decreased with increasing toasting time, with a larger decrease of OMIU-RL than lysine. First-order reactions calculated from the measured parameters show that glucosinolates were degraded faster than lysine, OMIU-RL and arginine and that physical changes to proteins seem to occur before chemical changes during toasting. Despite the drastic physical and chemical changes noticed on the proteins, the coefficient of in vitro CP digestibility ranged from 0.776 to 0.750 and there were no effects on the extent of protein hydrolysis after 120 min. In contrast, the rate of protein hydrolysis linearly decreased with increasing toasting time, which was largely correlated to the decrease in protein solubility, lysine and OMIU-RL observed. Rate of protein hydrolysis was more than 2-fold higher for the untoasted RSM compared to the 120 min toasted material. CONCLUSIONS: Increasing the toasting time for the production of RSM causes physical and chemical changes to the proteins that decrease the rate of protein hydrolysis. The observed decrease in the rate of protein hydrolysis could impact protein digestion and utilization.

5.
Article in English | MEDLINE | ID: mdl-27330744

ABSTRACT

BACKGROUND: During processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL). However, excessive heat treatment may reduce amino acid (AA) content in addition to lower AA digestibility and availability in RSM. The objective of the present study was to produce from one batch of a 00-rapeseed variety (17 µmol GSL/g dry matter (DM), seed grade quality) five differently processed RSM under standardized and defined conditions in a pilot plant, and to determine the impact of these different treatments on protein solubility and chemical composition, in particular with regard to contents of AA including reactive Lys (rLys) and levels of total and individual GSL. METHODS: Four RSM were exposed to wet toasting conditions (WetTC) with increasing residence time in the DT of 48, 64, 76, and 93 min. A blend of these four RSM was further processed, starting with saturated steam processing (< 100 °C) and followed by exposure to dry toasting conditions (DryTC) to further reduce the GSL content in this RSM. RESULTS: The contents of neutral detergent fiber and neutral detergent fiber bound crude protein (CP) increased linearly (P < 0.05), as residence time of RSM in the DT increased from 48 to 93 min, whereas contents of total and most individual GSL and those of Lys, rLys, Cys, and the calculated ratio of Lys:CP and rLys:CP decreased linearly (P ≤ 0.05). The combination of wet heating and DryTC resulted in the lowest GSL content compared to RSM produced under WetTC, but was associated with lowest protein solubility. CONCLUSIONS: It can be concluded that by increasing residence time in the DT or using alternative processing conditions such as wet heating combined with DryTC, contents of total and individual GSL in RSM can be substantially reduced. Further in vivo studies are warranted to elucidate if and to which extent the observed differences in protein quality and GSL content between RSM may affect digestibility and bioavailability of AA in monogastric animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...