Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 29(5): 605-9, 2015.
Article in English | MEDLINE | ID: mdl-26359421

ABSTRACT

BACKGROUND/AIM: Melatonin not only regulates circadian rhythm, but also induces apoptosis in tumor cells. Hence, elucidation of the basic reaction mechanisms of melatonin and its metabolites is a matter of interest. MATERIAL AND METHODS: Melatonin dissolved in a mixture of water/ethanol=40/60 form associates (unstable complexes). For simulation of biological processes, melatonin was excited by UV light into the singlet state. RESULTS: By using monochromatic UV light (λ=254 nm) melatonin ejects solvated electrons (eaq (-)), a part of which is scavenged by melatonin in ground state contained in the associates. Consequently, with increase of melatonin concentration a decrease of the determined quantum yield of emitted eaq (-), Q(eaq (-)), is obtained. The complex molecular structure of melatonin contains functional groups which can emit eaq (-), as well such consuming eaq (-). As a succession of these processes various types of metabolites are generated, as well as degradation products, with lower molecular weight, are formed. CONCLUSION: Not melatonin per se, but the ejected eaq (-) and thereby resulting various metabolites are responsible for different biological properties of melatonin.


Subject(s)
Antioxidants/chemistry , Melatonin/chemistry , Algorithms , Electrons , Free Radicals/chemistry , Models, Chemical , Molecular Structure
2.
In Vivo ; 28(5): 879-84, 2014.
Article in English | MEDLINE | ID: mdl-25189903

ABSTRACT

Corticosterone in water-ethanol solution can eject "solvated electrons" (eaq(-)) when excited into the singlet state by monochromatic UV-light (λ=254 nm). As a consequence of this process free radicals and H(+) ions were also generated. Hence, the objectives of this study were to determine the quantum yield, Q, at different corticosterone concentrations, and elucidate the fate of the generated free radicals and the involved reaction mechanisms. Because of the formation of associates, which consume a part of the emitted eaq(-), the Q decrease with increase of cortisone concentration. Additionally the H(+) ions scavenge and convert a part of the ejected eaq(-) into H-atoms. In comparsion with progesterone, the Q of corticosterone is much higher. Evidently, this effect is due to the two OH groups of corticosterone, which act as intense emission centres for eaq(-). Thereby, the generated free radicals from corticosterone lead to formation of metabolites, which were analyzed by combination of liquid-chromatography with mass spectrometry (LC/MS) method. Two of them were identified: 5α-pregnan-3α, 21-diol-11, 20-dione and 20ß-dihydroxycortisone. Both have the same mass number of 348.230. To explain the involved, rather complicated processes, a probable reaction mechanism is suggested.


Subject(s)
Corticosterone/chemistry , Electrons , Solvents/chemistry , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , Quantum Theory , Spectrophotometry
3.
Anticancer Res ; 33(3): 941-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23482765

ABSTRACT

BACKGROUND: Transients of the sex hormones testosterone (TES) and estrone (E1) exhibit an impact on the carcinogenesis of most prostate and breast cancer types. For elucidation of involved reaction mechanisms, in vitro, experiments using γ-ray for generation of attacking hormone transients and UV-light (λ=254 nm) for excitation of hormone molecules were applied. Materials and Methods. Experiments in vitro (Escherichia coli AB1157) incubated with TES and E1, individually as well as in mixture with vitamin C (electron donor), were performed under γ-irradiation in water-alcohol (40/60) medium for clarifying-up the reaction mechanism. The hormone degradation/regeneration processes were studied by high performance liquid chromatography analysis. RESULTS: Independently of hormone molecular structure, the determining factor for the biological properties, such as carcinogenity, were found to be based on the hormone transients. The biological ability of these, however, depends on the chemical properties of the species attacking the corresponding hormone. Hormone degradation can be, at least partly, converted into hormone regeneration by electron transfer from an electron donor (e.g. vitamin C), when available during the period of status nascendi of the hormone radicals.


Subject(s)
Estrone/metabolism , Testosterone/metabolism , Ascorbic Acid/pharmacology , Chromatography, High Pressure Liquid , Escherichia coli/drug effects , Escherichia coli/metabolism , Free Radicals
4.
Radiat Phys Chem Oxf Engl 1993 ; 80(8): 890-894, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21814301

ABSTRACT

Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated.The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way.The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

5.
Gynecol Endocrinol ; 27(12): 1077-83, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21480767

ABSTRACT

Based on recent findings that hormones can emit electrons () from their excited singlet state in polar media, it was of importance to study a possible mutual interaction of progesterone (PRG) and testosterone (TES) in this respect. Hormones of highest purity were dissolved in an air-free mixture of 40% triply distilled water and 60% ethanol, because the hormones are unsoluble in water. As energy source for substrate excitation in singlet state served a monochromatic UV-light (254 nm), the emitted electrons were scavenged by chloroethanol, whereby the quantum yield of produced Cl⁻ ions, Q (Cl⁻), is equal to Q(e⁻(aq)). Hormone degradation initiated by the electron emission was studied by HPLC method, using a Zorbax Eclipse XDB-C18 column (150 mm x 4.6 mm, 5 µm). The quantum yield of emitted e⁻(aq), Q(e⁻(aq)), from TES was 3.6 times higher than that from PRG, which is explained by the different molecular structures of the hormones. Observed 2nd and 3rd maxima of electron emission indicate the ability of TES and PRG products to also eject e⁻(aq), but with lower yield. It can be stated that a part of the emitted electrons from TES are consumed by PRG⁺ leading to a partial regeneration of hormone. The present results offer a deeper insight in the biological behavior of hormones.


Subject(s)
Electrons , Photolysis/drug effects , Progesterone/pharmacology , Testosterone/metabolism , Chromatography, High Pressure Liquid , Ethanol/chemistry , Ethanol/pharmacology , Humans , Models, Chemical , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxygen/chemistry , Oxygen/pharmacology , Photoelectron Spectroscopy , Quantum Theory , Testosterone/chemistry , Testosterone/radiation effects , Ultraviolet Rays , Water/chemistry , Water/pharmacology
6.
In Vivo ; 24(2): 173-8, 2010.
Article in English | MEDLINE | ID: mdl-20363990

ABSTRACT

BACKGROUND: The present work reports on the effect of oxidizing (OH, O(2)(*-)) and reducing free radicals (e(-)(aq), H) on 17beta-estradiol (17betaE2) in respect to breast cancer initiation. The objectives of the study were based on the following premise: the ability of 17betaE2 to emit electrons (e(-)(aq)) as well as to transfer them to other biological systems. Thereby, the resulting transient hormone products are leading to the formation of metabolites, some of which may initiate the neoplastic process. The present work considers the effect of the simultaneously generated oxidizing and reducing free radicals on the carcinogenic properties of the 17betaE2 metabolites. MATERIALS AND METHODS: Water-soluble 17betaE2 with incorporated 2-hydroxypropyl-beta-cyclodextrin (HBC) in various aqueous media (pH ~7.4), saturated with air, N(2)O or argon, as well as HBC alone, were exposed to the action of free radicals produced by gamma-ray. Escherichia coli bacteria (AB 1157) were used as a model for living systems. RESULTS: From the survival curves obtained under different conditions, the derived DeltaD(37) values (representing the radiation dose at which N/N(0)=0.37; N/N(0) ratio: N(0)=starting number of colonies, N=number after irradiation treatment) illustrate that 17betaE2 as well as HBC act as very powerful scavengers of OH and O(2)(*-) radicals. On the other hand, 17betaE2 and HBC intermediates resulting from attack of the reducing species (e(-)(aq), H) have strong anticancer properties. CONCLUSION: It is stated that DeltaD(37) values strongly depend on the reactivity of the individual free radicals. Oxidizing free radicals lead to positive DeltaD(37) values, illustrating the strongly pronounced radiation protecting ability of the systems. On the contrary, the primary reducing free radicals result in negative DeltaD(37) values, indicating anticancer effect.


Subject(s)
Breast Neoplasms/metabolism , Electrons , Escherichia coli/metabolism , Estradiol/metabolism , 2-Hydroxypropyl-beta-cyclodextrin , Breast Neoplasms/chemistry , Dose-Response Relationship, Radiation , Escherichia coli/growth & development , Escherichia coli/radiation effects , Estradiol/chemistry , Estradiol/toxicity , Excipients/chemistry , Excipients/metabolism , Female , Free Radicals/chemistry , Free Radicals/metabolism , Humans , In Vitro Techniques , Oxidation-Reduction/radiation effects , Water/chemistry , Water/metabolism , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/metabolism
7.
J Photochem Photobiol B ; 98(1): 20-4, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-19926488

ABSTRACT

4-Hydroxyestrone (4-OHE(1)), a typical cancer-inducing metabolite, originating from 17beta-estradiol (17beta-E2), was chosen as a model for the studies. The aim was to get a deeper insight in the mechanisms of its ability to initiate cancer. It was found, that 4-OHE(1) can eject electrons (e(aq)(-)), when excited in the singlet state by monochromatic UV-light (lambda=254 nm) in polar media (water:ethanol=40:60 vol.%). The quantum yield Q(e(aq)(-)), determined for various 4-OHE(1) concentrations, is found to be as high as that previously observed for 17beta-E2. It decreases with increasing substrate concentration, but it is enhanced at higher temperature. The ability of 4-OHE(1) to eject as well as to consume and to transfer electrons to other biological systems, classifies it as an electron mediator, similar to 17beta-E2. The 4-OHE(1) transients resulting of the electron emission process are leading to the formation of secondary metabolites. Surprisingly, it was established that the secondary metabolites possess likewise the ability to eject as well as to consume electrons. Hence, they behave similar like 17beta-E2. However, the structure of the secondary formed metabolites, which determinates their biological properties and carcinogenity, depends on the nature of the available reaction partners involved in their formation. A probable reaction mechanism explaining the subject matter is discussed.


Subject(s)
Carcinogens/metabolism , Electrons , Hydroxyestrones/metabolism , Carcinogens/chemistry , Estradiol/metabolism , Hydroxyestrones/chemistry , Quantum Theory , Ultraviolet Rays
8.
J Photochem Photobiol B ; 94(3): 179-82, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19124256

ABSTRACT

Testosterone (TES; 4-androstene-17beta-ol-3-on) is found for the first time to eject electrons from its singlet excited state in water-ethanol solvent mixture. This ability was very recently also observed for 17beta-estradiol (17betaE2) and progesterone (PRG)/1/. With increasing TES-concentration, the yield of solvated electrons (e(s)(-)) is decreasing, because of "associate" formation. At higher absorbed UV-doses (lambda=254 nm) the e(s)(-) yield is passing a sharp maximum by formation of TES-ethanol adducts, which are able likewise to emit electrons when excited. At prolonged irradiation the resulting photolytic products of TES-ethanol adducts are also able to emit electrons. The capability of the hormones: 17betaE2, PRG and TES to eject electrons and the resulting metabolites, some of which can induce cancer, is discussed.


Subject(s)
Electrons , Testosterone/chemistry , Ultraviolet Rays , Ethanol , Photolysis , Solutions , Testosterone/radiation effects , Water
9.
J Photochem Photobiol B ; 92(1): 38-41, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18499468

ABSTRACT

It was established for the first time, that the sexual hormones 17beta-estradiol (17betaE2) and progesterone (PRG) are able to emit electrons from their excited single state in water-ethanol mixtures. The yield of the "solvated electrons" (e(s)(-)) depends on the substrate concentration, the ratio of water-alcohol-mixtures and the temperature. The e(s)(-) yield obtained from 17betaE2 is by two orders of magnitude higher than this of PRG. The possible relationship of the resulting hormone transients from 17betaE2 leading via specific metabolites to breast cancer is discussed.


Subject(s)
Electrons , Estradiol/chemistry , Progesterone/chemistry , Estradiol/metabolism , Estradiol/radiation effects , Humans , Photobiology , Progesterone/metabolism , Progesterone/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...