Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Neural Regen Res ; 18(10): 2161-2166, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056124

ABSTRACT

Traumatic spinal cord injuries interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. This interruption results in either temporary or permanent alterations in the locomotor, sensory, and autonomic functions. Damage in the spinal tissue prevents the re-growth of severed axons across the lesion and their reconnection with neuronal targets. Therefore, the absence of spontaneous repair leads to sustained impairment in voluntary control of movement below the injury. For decades, axonal regeneration and reconnection have been considered the opitome of spinal cord injury repair with the goal being the repair of the damaged long motor and sensory tracts in a complex process that involves: (1) resealing injured axons; (2) reconstructing the cytoskeletal structure inside axons; (3) re-establishing healthy growth cones; and (4) assembling axonal cargos. These biological processes require an efficient production of adenosine triphosphate, which is affected by mitochondrial dysfunction after spinal cord injury. From a pathological standpoint, during the secondary stage of spinal cord injury, mitochondrial homeostasis is disrupted, mainly in the distal segments of severed axons. This result in a reduction of adenosine triphosphate levels and subsequent inactivation of adenosine triphosphate-dependent ion pumps required for the regulation of ion concentrations and reuptake of neurotransmitters, such as glutamate. The consequences are calcium overload, reactive oxygen species formation, and excitotoxicity. These events are intimately related to the activation of necrotic and apoptotic cell death programs, and further exacerbate the secondary stage of the injury, being a hallmark of spinal cord injury. This is why restoring mitochondrial function during the early stage of secondary injury could represent a potentially effective therapeutic intervention to overcome the motor and sensory failure produced by spinal cord injury. This review discusses the most recent evidence linking mitochondrial dysfunction with axonal regeneration failure in the context of spinal cord injury. It also covers the future of mitochondria-targeted therapeutical approaches, such as antioxidant molecules, removing mitochondrial anchor proteins, and increasing energetic metabolism through creatine treatment. These approaches are intended to enhance functional recovery by promoting axonal regeneration-reconnection after spinal cord injury.

4.
Stem Cell Res Ther ; 12(1): 590, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34823607

ABSTRACT

BACKGROUND: Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease. METHODS: Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. RESULTS: Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. CONCLUSIONS: We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Action Potentials/physiology , Cell Differentiation/genetics , Child , Epilepsy/genetics , Epilepsy/metabolism , Gene Expression , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism
5.
Cancer Biol Ther ; 13(11): 1123-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22825326

ABSTRACT

Triple negative breast cancers (TNBC) lacking hormone receptors and HER-2 amplification are very aggressive tumors. Since relevant differences between primary tumors and metastases could arise during tumor progression as evidenced by phenotypic discordances reported for hormonal receptors or HER-2 expression, in this analysis we studied changes that occurred in our TNBC model IIB-BR-G throughout the development of IIB-BR-G-MTS6 metastasis to the lymph nodes (LN) in nude mice, using an antibody-based protein array to characterize their expression profile. We also analyzed their growth kinetics, migration, invasiveness and cytoskeleton structure in vitro and in vivo. In vitro IIB-BR-G-MTS6 cells grew slower but showed higher anchorage independent growth. In vivo IIB-BR-G-MTS6 tumors grew significantly faster and showed a 100% incidence of LN metastasis after s.c. inoculation, although no metastasis was observed for IIB-BR-G. CCL3, IL1ß, CXCL1, CSF2, CSF3, IGFBP1, IL1α, IL6, IL8, CCL20, PLAUR, PlGF and VEGF were strongly upregulated in IIB-BR-G-MTS6 while CCL4, ICAM3, CXCL12, TNFRSF18, FIGF were the most downregulated proteins in the metastatic cell line. IIB-BR-G-MTS6 protein expression profile could reflect a higher NFκB activation in these cells. In vitro, IIB-BR-G displayed higher migration but IIB-BR-G-MTS6 had more elevated matrigel invasion ability. In agreement with that observation, IIB-BR-G-MTS6 had an upregulated expression of MMP1, MMP9, MMP13, PLAUR and HGF. IIB-BR-G-MTS6 tumors presented also higher local lymphatic invasion than IIB-BR-G but similar lymphatic vessel densities. VEGFC and VEGFA/B expression were higher both in vitro and in vivo for IIB-BR-G-MTS6. IIB-BR-G-MTS6 expressed more vimentin than IB-BR-G cells, which was mainly localized in the cellular extremities and both cell lines are E-cadherin negative. Our results suggest that IIB-BR-G-MTS6 cells have acquired a pronounced epithelial-to-mesenchymal transition phenotype. Protein expression changes observed between primary tumor-derived IIB-BR-G and metastatic IIB-BR-G-MTS6 TNBC cells suggest potential targets involved in the control of metastasis.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Neoplasm Proteins/biosynthesis , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , Immunohistochemistry , Lymphatic Metastasis , Mice , Mice, Nude , Neoplasm Proteins/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Transplantation, Heterologous , Vimentin/biosynthesis , Vimentin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...