Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Inflamm (Lond) ; 21(1): 1, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212783

ABSTRACT

BACKGROUND: Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS: We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION: Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.

2.
Proc Natl Acad Sci U S A ; 120(44): e2304933120, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37847729

ABSTRACT

Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processing of movement input from the inner ear. Motion-induced activation of VN neurons recapitulates MS-related signs. However, the genetic identity of VN neurons mediating MS-related autonomic and aversive responses remains unknown. Here, we identify a central role of cholecystokinin (CCK)-expressing VN neurons in motion-induced malaise. Moreover, we show that CCK VN inputs onto the parabrachial nucleus activate Calca-expressing neurons and are sufficient to establish avoidance to novel food, which is prevented by CCK-A receptor antagonism. These observations provide greater insight into the neurobiological regulation of MS by identifying the neural substrates of MS and providing potential targets for treatment.


Subject(s)
Motion Sickness , Vestibule, Labyrinth , Animals , Mice , Movement , Neurons/physiology , Vestibular Nuclei/physiology , Vestibule, Labyrinth/physiology
3.
Science ; 380(6651): eadh9351, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37347868

ABSTRACT

In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.


Subject(s)
Calcium , Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Mitochondrial Proteins , Animals , Mice , Calcium/metabolism , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Liver/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms , Mice, Knockout , Humans , Mice, Inbred C57BL , HeLa Cells , Alternative Splicing , Endoplasmic Reticulum Stress
4.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966335

ABSTRACT

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Subject(s)
Carnitine O-Palmitoyltransferase , Neurons , Thirst , Animals , Female , Male , Mice , Agouti-Related Protein/genetics , Body Weight , Fatty Acids/metabolism , Carnitine O-Palmitoyltransferase/genetics , Eating , Sex Factors
5.
Nat Neurosci ; 25(7): 900-911, 2022 07.
Article in English | MEDLINE | ID: mdl-35710984

ABSTRACT

The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.


Subject(s)
Purkinje Cells , Receptors, Dopamine D2 , Animals , Cerebellum , Male , Mice , Mice, Inbred C57BL , Purkinje Cells/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Social Behavior
6.
Glia ; 70(11): 2032-2044, 2022 11.
Article in English | MEDLINE | ID: mdl-35770802

ABSTRACT

Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.


Subject(s)
Leigh Disease , Animals , Disease Models, Animal , Electron Transport Complex I/metabolism , Humans , Interleukin-6/metabolism , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Mice , Mice, Knockout , Microglia/metabolism
7.
Brain ; 145(1): 45-63, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34849584

ABSTRACT

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Subject(s)
Electron Transport Complex I , Leigh Disease , Mitochondrial Diseases , Animals , Electron Transport Complex I/genetics , Humans , Leigh Disease/genetics , Mice , Mice, Knockout , Mitochondrial Diseases/genetics , Oxidative Phosphorylation
8.
Theranostics ; 11(20): 9805-9820, 2021.
Article in English | MEDLINE | ID: mdl-34815787

ABSTRACT

Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.


Subject(s)
Interleukin-13/metabolism , Interleukin-4/metabolism , Spinal Cord Injuries/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Female , Interleukin-13/immunology , Interleukin-13/pharmacology , Interleukin-4/immunology , Interleukin-4/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Recovery of Function/physiology , Spinal Cord/metabolism , Spinal Cord Injuries/immunology , Spinal Cord Injuries/physiopathology , Treatment Outcome
9.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445229

ABSTRACT

Symbiosis between the mitochondrion and the ancestor of the eukaryotic cell allowed cellular complexity and supported life. Mitochondria have specialized in many key functions ensuring cell homeostasis and survival. Thus, proper communication between mitochondria and cell nucleus is paramount for cellular health. However, due to their archaebacterial origin, mitochondria possess a high immunogenic potential. Indeed, mitochondria have been identified as an intracellular source of molecules that can elicit cellular responses to pathogens. Compromised mitochondrial integrity leads to release of mitochondrial content into the cytosol, which triggers an unwanted cellular immune response. Mitochondrial nucleic acids (mtDNA and mtRNA) can interact with the same cytoplasmic sensors that are specialized in recognizing genetic material from pathogens. High-energy demanding cells, such as neurons, are highly affected by deficits in mitochondrial function. Notably, mitochondrial dysfunction, neurodegeneration, and chronic inflammation are concurrent events in many severe debilitating disorders. Interestingly in this context of pathology, increasing number of studies have detected immune-activating mtDNA and mtRNA that induce an aberrant production of pro-inflammatory cytokines and interferon effectors. Thus, this review provides new insights on mitochondria-driven inflammation as a potential therapeutic target for neurodegenerative and primary mitochondrial diseases.


Subject(s)
Mitochondria/immunology , Neurodegenerative Diseases/immunology , Animals , Cytokines/immunology , DNA, Mitochondrial/immunology , Humans , Mitochondria/pathology , Neurodegenerative Diseases/pathology , RNA, Mitochondrial/immunology
10.
Mol Neurobiol ; 58(1): 243-262, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32918239

ABSTRACT

Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.


Subject(s)
Electron Transport Complex I/deficiency , Metallothionein/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Diseases/prevention & control , Animals , Ataxia/complications , Ataxia/pathology , Ataxia/physiopathology , Biomarkers/metabolism , Body Weight , Disease Models, Animal , Electron Transport Complex I/metabolism , Female , Hippocampus/pathology , Inflammation/blood , Inflammation/pathology , Male , Metabolome , Metallothionein/genetics , Mice, Knockout , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Motor Activity , Oxidation-Reduction , Oxidative Stress , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Survival Analysis , beta 2-Microglobulin/metabolism
11.
Nature ; 586(7829): 412-416, 2020 10.
Article in English | MEDLINE | ID: mdl-33029011

ABSTRACT

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Hippocampus/cytology , Memory Consolidation , Neurons/metabolism , Somatostatin/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Eukaryotic Initiation Factor-2/deficiency , Eukaryotic Initiation Factor-2/genetics , Excitatory Postsynaptic Potentials , Hippocampus/physiology , Long-Term Potentiation , Male , Memory, Long-Term , Mice , Mice, Inbred C57BL , Neural Inhibition , Neuronal Plasticity , Parvalbumins , Phosphorylation , Pyramidal Cells/physiology , Synaptic Transmission
12.
Front Cell Dev Biol ; 8: 660, 2020.
Article in English | MEDLINE | ID: mdl-32850799

ABSTRACT

Defects in mitochondrial function lead to severe neuromuscular orphan pathologies known as mitochondrial disease. Among them, Leigh Syndrome is the most common pediatric presentation, characterized by symmetrical brain lesions, hypotonia, motor and respiratory deficits, and premature death. Mitochondrial diseases are characterized by a marked anatomical and cellular specificity. However, the molecular determinants for this susceptibility are currently unknown, hindering the efforts to find an effective treatment. Due to the complex crosstalk between mitochondria and their supporting cell, strategies to assess the underlying alterations in affected cell types in the context of mitochondrial dysfunction are critical. Here, we developed a novel virus-based tool, the AAV-mitoTag viral vector, to isolate mitochondria from genetically defined cell types. Expression of the AAV-mitoTag in the glutamatergic vestibular neurons of a mouse model of Leigh Syndrome lacking the complex I subunit Ndufs4 allowed us to assess the proteome and acetylome of a subset of susceptible neurons in a well characterized model recapitulating the human disease. Our results show a marked reduction of complex I N-module subunit abundance and an increase in the levels of the assembly factor NDUFA2. Transiently associated non-mitochondrial proteins such as PKCδ, and the complement subcomponent C1Q were also increased in Ndufs4-deficient mitochondria. Furthermore, lack of Ndufs4 induced ATP synthase complex and pyruvate dehydrogenase (PDH) subunit hyperacetylation, leading to decreased PDH activity. We provide novel insight on the pathways involved in mitochondrial disease, which could underlie potential therapeutic approaches for these pathologies.

13.
Nat Commun ; 11(1): 1957, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327644

ABSTRACT

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Subject(s)
Neostriatum/cytology , Neurons/physiology , Nucleus Accumbens/cytology , Receptors, Dopamine D2/metabolism , Amphetamine/pharmacology , Animals , Biomarkers/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , Corpus Striatum/physiology , Dopamine Agents/pharmacology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neostriatum/metabolism , Neostriatum/physiology , Neural Pathways , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Receptors, Dopamine D2/genetics
14.
Bio Protoc ; 10(17): e3741, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-33659401

ABSTRACT

Respiratory dysfunction is among the main cause of severe and fatal pathologies worldwide. The use of effective experimental models and methodologies for the study of the pulmonary pathophysiology is necessary to prevent, control and cure these diseases. Plethysmography, a technique for the assessment of lung function, has been widely applied in mice for the characterization of respiratory physiology. However, classical plethysmography methods present technical limitations such as the use of anesthesia and animal immobilization. Whole-body plethysmography (WBP) avoids these issues providing a non-invasive approach for the assessment of the respiratory function in conscious animals. WBP relies on the recording of pressure changes that are produced by the spontaneous breathing activity of an animal placed inside an airtight chamber. During normal respiration, pressure variation is directly proportional to the respiratory pattern of the animal allowing the measurement of the respiratory rate and tidal volume. These parameters are commonly used to evaluate pulmonary function in different physiological and disease models. In contrast to classical plethysmography methods, WBP technique allows reproducible serial measurements as it avoids animal restraint or the use of anesthesia. These key features rend WBP a suitable approach for longitudinal studies allowing the assessment of progressive respiratory alterations in physiological and pathological conditions. This protocol describes the procedures for the measurement of the breathing patterns in mice using the WBP method, the data analysis and results interpretation.

15.
Elife ; 82019 08 12.
Article in English | MEDLINE | ID: mdl-31403401

ABSTRACT

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.


Subject(s)
Leigh Disease/pathology , Leigh Disease/physiopathology , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Neurons/pathology , Animals , Basal Ganglia/pathology , Brain Stem/pathology , Disease Models, Animal , Disease Progression , Electron Transport Complex I/deficiency , Mice , Phenotype
16.
Curr Protoc Neurosci ; 88(1): e77, 2019 06.
Article in English | MEDLINE | ID: mdl-31216392

ABSTRACT

Ribosome tagging has become a very useful in vivo approach for analyzing gene expression and mRNA translation in specific cell types that are difficult and time consuming to isolate by conventional methods. The approach is based on selectively expressing a hemagglutinin A (HA)-tagged ribosomal protein in a target cell type and then using antibodies against HA to purify the polysomes and associated mRNAs from the target cell. The original approach makes use of a mouse line (RiboTag) harboring a modified allele of Rpl22 (Rpl22-HA) that is induced by the action of Cre recombinase. The Rpl22-HA gene can also be introduced into the animal by stereotaxic injection of an AAV-DIO-Rpl22-HA that is then activated in Cre-expressing cells. Both methods for tagging ribosomes facilitate the immunoprecipitation of ribosome-bound mRNAs and their analysis by qRT-PCR or RNA-Seq. This protocol will discuss the technical procedures and describe important considerations relevant to the analysis of the data. © 2019 by John Wiley & Sons, Inc.


Subject(s)
RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Ribosomes/genetics , Sequence Analysis, RNA/methods , Animals , Gene Expression , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ribosomes/metabolism
17.
Front Mol Neurosci ; 10: 265, 2017.
Article in English | MEDLINE | ID: mdl-28883788

ABSTRACT

Inability of mitochondria to generate energy leads to severe and often fatal myoencephalopathies. Among these, Leigh syndrome (LS) is one of the most common childhood mitochondrial diseases; it is characterized by hypotonia, failure to thrive, respiratory insufficiency and progressive mental and motor dysfunction, leading to early death. Basal ganglia nuclei, including the striatum, are affected in LS patients. However, neither the identity of the affected cell types in the striatum nor their contribution to the disease has been established. Here, we used a mouse model of LS lacking Ndufs4, a mitochondrial complex I subunit, to confirm that loss of complex I, but not complex II, alters respiration in the striatum. To assess the role of striatal dysfunction in the pathology, we selectively inactivated Ndufs4 in the striatal medium spiny neurons (MSNs), which account for over 95% of striatal neurons. Our results show that lack of Ndufs4 in MSNs causes a non-fatal progressive motor impairment without affecting the cognitive function of mice. Furthermore, no inflammatory responses or neuronal loss were observed up to 6 months of age. Hence, complex I deficiency in MSNs contributes to the motor deficits observed in LS, but not to the neural degeneration, suggesting that other neuronal populations drive the plethora of clinical signs in LS.

18.
J Neurosci ; 37(33): 7939-7947, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28729439

ABSTRACT

The striatum is anatomically and behaviorally implicated in behaviors that promote efficient foraging. To investigate this function, we studied instrumental choice behavior in mice lacking GPR88, a striatum-enriched orphan G-protein-coupled receptor that modulates striatal medium spiny neuron excitability. Our results reveal that hungry mice lacking GPR88 (KO mice) were slow to acquire food-reinforced lever press but could lever press similar to controls on a progressive ratio schedule. Both WT and KO mice discriminated between reward and no-reward levers; however, KO mice failed to discriminate based on relative quantity-reward (1 vs 3 food pellets) or effort (3 vs 9 lever presses). We also demonstrate preference for the high-reward (3 pellet) lever was selectively reestablished when GPR88 expression was restored to the striatum. We propose that GPR88 expression within the striatum is integral to efficient action-selection during foraging.SIGNIFICANCE STATEMENT Evolutionary pressure driving energy homeostasis favored detection and comparison of caloric value. In wild and laboratory settings, neural systems involved in energy homeostasis bias foraging to maximize energy efficiency. This is observed when foraging behaviors are guided by superior nutritional density or minimized caloric expenditure. The striatum is anatomically and functionally well placed to perform the sensory and motor integration necessary for efficient action selection during foraging. However, few studies have examined this behavioral phenomenon or elucidated underlying molecular mechanisms. Both humans and mice with nonfunctional GPR88 have been shown to present striatal dysfunctions and impaired learning. We demonstrate that GPR88 expression is necessary to efficiently integrate effort and energy density information guiding instrumental choice.


Subject(s)
Choice Behavior/physiology , Corpus Striatum/metabolism , Feeding Behavior/physiology , Receptors, G-Protein-Coupled/biosynthesis , Reward , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Receptors, G-Protein-Coupled/deficiency
19.
Curr Biol ; 26(16): 2194-201, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27498564

ABSTRACT

An enigma of modern medicine has persisted for over 150 years. The mechanisms by which volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, and immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to produce a significant effect when genetically tested in whole-animal models [1-3]. However, mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4-6]. Ndufs4 knockout (KO) mice lack a subunit of mitochondrial complex I and are strikingly hypersensitive to VAs yet resistant to the intravenous anesthetic ketamine [7]. The change in VA sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 pyramidal neurons does not differ between Ndufs4(KO) and control mice. Isoflurane concentrations that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 pyramidal cells. Spontaneous inhibitory postsynaptic currents (sIPSCs) were not differentially affected between genotypes. The effects of isoflurane were similar on evoked field excitatory postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices. We propose that CA1 presynaptic excitatory neurotransmission is hypersensitive to isoflurane in Ndufs4(KO) mice due to the inhibition of pre-existing reduced complex I function, reaching a critical reduction that can no longer meet metabolic demands.


Subject(s)
Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Mitochondria/drug effects , Pyramidal Cells/drug effects , Synaptic Transmission , Animals , Dose-Response Relationship, Drug , Electron Transport Complex I/metabolism , Female , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Pyramidal Cells/physiology
20.
Nat Neurosci ; 19(5): 734-741, 2016 05.
Article in English | MEDLINE | ID: mdl-27019015

ABSTRACT

In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues.


Subject(s)
Aggression/physiology , Agouti-Related Protein/physiology , Amygdala/physiology , Fear/physiology , Hypothalamus/physiology , Peptide Fragments/physiology , Septal Nuclei/physiology , Starvation/physiopathology , Agouti-Related Protein/metabolism , Amygdala/metabolism , Animals , Gene Knock-In Techniques , Hypothalamus/metabolism , Male , Mice , Neural Pathways/metabolism , Neural Pathways/physiology , Neurons/physiology , Peptide Fragments/metabolism , Septal Nuclei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...