Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419397

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Subject(s)
Activating Transcription Factor 4 , Neurodegenerative Diseases , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lipids , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Male , Mice, Inbred C57BL , Cells, Cultured , GTP Phosphohydrolases/metabolism
2.
Aging Cell ; 22(12): e14009, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37960952

ABSTRACT

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Subject(s)
Imaging, Three-Dimensional , Mitochondria Associated Membranes , Mice , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , DNA, Mitochondrial/metabolism , Mitochondrial Proteins/metabolism , Mammals/genetics , Mammals/metabolism
3.
Differentiation ; 131: 74-81, 2023.
Article in English | MEDLINE | ID: mdl-37167860

ABSTRACT

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutations in MMACHC cause craniofacial defects are yet to be completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC (hg13) and performed restoration experiments with either a wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development but did have abnormal chondrocyte nuclear organization and an increase in the average number of neighboring cell contacts, both phenotypes were fully penetrant. Abnormal chondrocyte nuclear organization was not associated with defects in the localization of neural crest specific markers, sox10 (RFP transgene) or barx1. Both nuclear angles and the number of neighboring cell contacts were fully restored by wildtype MMACHC and a cobalamin binding deficient variant of the MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Zebrafish , Animals , Mice , Zebrafish/genetics , Chondrocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Vitamin B 12/genetics , Vitamin B 12/metabolism , Mutation , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Gene ; 864: 147290, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36804358

ABSTRACT

Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.


Subject(s)
Intellectual Disability , Zebrafish , Animals , Mice , Codon, Nonsense , Ependymoglial Cells/metabolism , Phenotype , Repressor Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-36747751

ABSTRACT

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the gamma-aminobutyric acid type A receptor (GABAAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have previously been developed to understand the function of GABRA1 during development, but these models have produced complex and at times incongruent data. Thus, additional model systems are required to validate and substantiate previously published results. We investigated the behavioral swim patterns associated with a nonsense mutation of the zebrafish gabra1 (sa43718 allele) gene. The sa43718 allele causes a decrease in gabra1 mRNA expression, which is associated with light induced hypermotility, one phenotype associated with seizure like behavior in zebrafish. Mutation of gabra1 was accompanied by decreased mRNA expression of gabra2, gabra3, and gabra5, indicating a reduction in the expression of additional alpha sub-units of the GABAAR. Although multiple sub-units were decreased in total expression, larvae continued to respond to pentylenetetrazole (PTZ) indicating that a residual GABAAR exists in the sa43718 allele. Proteomics analysis demonstrated that nonsense mutation of gabra1 is associated with abnormal expression of proteins that regulate proton transport, ion homeostasis, vesicle transport, and mitochondrial protein complexes. These data support previous studies performed in a zebrafish nonsense allele created by CRISPR/Cas9 and validate that loss of function mutations in the gabra1 gene result in seizure like phenotypes with abnormal function of inhibitory synapses.

6.
bioRxiv ; 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36711998

ABSTRACT

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutation of MMACHC cause craniofacial defects have not been completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC ( hg13 ) and performed restoration experiments with either wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development, but did have abnormal chondrocyte intercalation, which was fully penetrant. Abnormal chondrocyte intercalation was not associated with defects in the expression/localization of neural crest specific markers, sox10 or barx1 . Most importantly, chondrocyte organization was fully restored by wildtype MMACHC and a cobalamin binding deficient variant of MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.

7.
Am J Undergrad Res ; 20(1): 77-84, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38617190

ABSTRACT

ZNF143 is a sequence-specific DNA binding protein that regulates the expression of protein-coding genes and small RNA molecules. In humans, ZNF143 interacts with HCFC1, a transcriptional cofactor, to regulate the expression of downstream target genes, including MMACHC, which encodes an enzyme involved in cobalamin (cbl) metabolism. Mutations in HCFC1 or ZNF143 cause an inborn error of cobalamin metabolism characterized by abnormal cbl metabolism, intellectual disability, seizures, and mild to moderate craniofacial abnormalities. However, the mechanisms by which ZNF143 mutations cause individual phenotypes are not completely understood. Defects in metabolism and craniofacial development are hypothesized to occur because of decreased expression of MMACHC. But recent results have called into question this mechanism as the cause for craniofacial development. Therefore, in the present study, we implemented a loss of function analysis to begin to uncover the function of ZNF143 in craniofacial development using the developing zebrafish. The knockdown of znf143b, one zebrafish ortholog of ZNF143, caused craniofacial phenotypes of varied severity, which included a shortened and cleaved Meckel's cartilage, partial loss of ceratobranchial arches, and a distorted ceratohyal. These phenotypes did not result from a defect in the number of total chondrocytes but were associated with a mild to moderate decrease in mmachc expression. Interestingly, expression of human MMACHC via endogenous transgene prevented the onset of craniofacial phenotypes associated with znf143b knockdown. Collectively, our data establishes that knockdown of znf143b causes craniofacial phenotypes that can be alleviated by increased expression of MMACHC.

8.
Mol Biol Cell ; 32(22): vo1, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34735267

ABSTRACT

Research has shown that individuals from diverse backgrounds and women are underrepresented in the science, technology, engineering, and mathematics (STEM) fields. A lack of identifiable role models/mentorship and poor mentoring experiences are a few cited factors that continue to limit increased diversity. As an underrepresented individual and a faculty member at a minority-serving institution, I strive to provide my students with a strong example, one that they can identify with. Part of my approach has been to develop mentoring pillars and strategies that seek to build relationships with my mentees and that aim to improve their research experience. This essay briefly describes my experiences as a mentor and the mentoring pillars I developed to promote a diverse and inclusive environment for my current and future mentees.


Subject(s)
Mentoring/methods , Mentors , Minority Groups , Engineering/education , Faculty , Female , Humans , Mathematics/education , Mentoring/trends , Minority Groups/statistics & numerical data , Students , Technology/education , Texas , Universities/statistics & numerical data
9.
BMC Dev Biol ; 21(1): 7, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33678174

ABSTRACT

BACKGROUND: Heparan sulfate proteoglycan 2 (HSPG2) encodes for perlecan, a large proteoglycan that plays an important role in cartilage formation, cell adhesion, and basement membrane stability. Mutations in HSPG2 have been associated with Schwartz-Jampel Syndrome (SJS) and Dyssegmental Dysplasia Silverman-Handmaker Type (DDSH), two disorders characterized by skeletal abnormalities. These data indicate a function for HSPG2 in cartilage development/maintenance. However, the mechanisms in which HSPG2 regulates cartilage development are not completely understood. Here, we explored the relationship between this gene and craniofacial development through morpholino-mediated knockdown of hspg2 using zebrafish. RESULTS: Knockdown of hspg2 resulted in abnormal development of the mandibular jaw joint at 5 days post fertilization (DPF). We surmised that defects in mandible development were a consequence of neural crest cell (NCC) dysfunction, as these multipotent progenitors produce the cartilage of the head. Early NCC development was normal in morphant animals as measured by distal-less homeobox 2a (dlx2a) and SRY-box transcription factor 10 (sox10) expression at 1 DPF. However, subsequent analysis at later stages of development (4 DPF) revealed a decrease in the number of Sox10 + and Collagen, type II, alpha 1a (Col2a1a)+ cells within the mandibular jaw joint region of morphants relative to random control injected embryos. Concurrently, morphants showed a decreased expression of nkx3.2, a marker of jaw joint formation, at 4 DPF. CONCLUSIONS: Collectively, these data suggest a complex role for hspg2 in jaw joint formation and late stage NCC differentiation.


Subject(s)
Dwarfism , Osteochondrodysplasias , Animals , Mandible , Neural Crest , Zebrafish/genetics
10.
Genesis ; 58(12): e23397, 2020 12.
Article in English | MEDLINE | ID: mdl-33197123

ABSTRACT

Inborn errors of cholesterol metabolism occur as a result of mutations in the cholesterol synthesis pathway (CSP). Although mutations in the CSP cause a multiple congenital anomaly syndrome, craniofacial abnormalities are a hallmark phenotype associated with these disorders. Previous studies have established that mutation of the zebrafish hmgcs1 gene (Vu57 allele), which encodes the first enzyme in the CSP, causes defects in craniofacial development and abnormal neural crest cell (NCC) differentiation. However, the molecular mechanisms by which the products of the CSP disrupt NCC differentiation are not completely known. Cholesterol is known to regulate the activity of WNT signaling, an established regulator of NCC differentiation. We hypothesized that defects in cholesterol synthesis are associated with reduced WNT signaling, consequently resulting in abnormal craniofacial development. To test our hypothesis we performed a combination of pharmaceutical inhibition, gene expression assays, and targeted rescue experiments to understand the function of the CSP and WNT signaling during craniofacial development. We demonstrate reduced expression of four canonical WNT downstream target genes in homozygous carriers of the Vu57 allele and reduced axin2 expression, a known WNT target gene, in larvae treated with Ro-48-8071, an inhibitor of cholesterol synthesis. Moreover, activation of WNT signaling via treatment with WNT agonist I completely restored the craniofacial defects present in a subset of animals carrying the Vu57 allele. Collectively, these data suggest interplay between the CSP and WNT signaling during craniofacial development.


Subject(s)
Axin Protein , Cholesterol/metabolism , Craniofacial Abnormalities/genetics , Gene Expression Regulation, Developmental/drug effects , Neural Crest/metabolism , Wnt Signaling Pathway/drug effects , Zebrafish/genetics , Alleles , Animals , Axin Protein/genetics , Axin Protein/metabolism , Cell Differentiation/drug effects , Collagen Type II/genetics , Collagen Type II/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Embryo, Nonmammalian/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Face/embryology , Female , Genotype , Male , Mutation , Neural Crest/embryology , Phenotype , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
BMC Neurosci ; 21(1): 27, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522152

ABSTRACT

BACKGROUND: Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. METHODS: Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. RESULTS: The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. CONCLUSION: Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.


Subject(s)
Brain/growth & development , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation/genetics , Host Cell Factor C1/genetics , Zebrafish Proteins/genetics , Animals , Brain/metabolism , Cells, Cultured , Neural Stem Cells/physiology , Neurogenesis , Neurons/metabolism , Transcription Factors/metabolism , Zebrafish/genetics
12.
Biol Open ; 9(4)2020 04 13.
Article in English | MEDLINE | ID: mdl-32205311

ABSTRACT

We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease.


Subject(s)
Gene Expression , Motor Activity/genetics , Protein Subunits/genetics , Receptors, GABA-A/genetics , Zebrafish , Alleles , Amino Acid Sequence , Animals , Gene Knockdown Techniques , Genetic Association Studies , Heterozygote , Humans , Larva , Locomotion/genetics , Mutation , Phenotype , Protein Subunits/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism
13.
Med Res Arch ; 8(6)2020 Jun.
Article in English | MEDLINE | ID: mdl-34164576

ABSTRACT

Mutations in the HCFC1 gene are associated with cases of syndromic (cblX) and non-syndromic intellectual disability. Syndromic individuals present with severe neurological defects including intractable epilepsy, facial dysmorphia, and intellectual disability. Non-syndromic individuals have also been described and implicate a role for HCFC1 during brain development. The penetrance of phenotypes and the presence of an overall syndrome is associated with the location of the mutation within the HCFC1 protein. Thus, one could hypothesize that the positioning of HCFC1 mutations lead to different neurological phenotypes that include but are not restricted to intellectual disability. The HCFC1 protein is comprised of multiple domains that function in cellular proliferation/metabolism. Several reports of HCFC1 disease variants have been identified, but a comprehensive review of each variant and its associated phenotypes has not yet been compiled. Here we perform a detailed review of HCFC1 function, model systems, variant location, and accompanying phenotypes to highlight current knowledge and the future status of the field.

14.
Blood Adv ; 3(8): 1244-1254, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30987969

ABSTRACT

Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.


Subject(s)
Cell Differentiation/genetics , Erythrocytes/enzymology , Erythropoiesis/genetics , Hydroxymethylglutaryl-CoA Synthase , Mutation, Missense , Terpenes/metabolism , Zebrafish , Amino Acid Substitution , Animals , Cholesterol/biosynthesis , Cholesterol/genetics , GATA1 Transcription Factor/biosynthesis , GATA1 Transcription Factor/genetics , Gene Expression Regulation , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/genetics
15.
PLoS One ; 12(7): e0180856, 2017.
Article in English | MEDLINE | ID: mdl-28686747

ABSTRACT

There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.


Subject(s)
Cholesterol/biosynthesis , Craniofacial Abnormalities/genetics , Hedgehog Proteins/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl-CoA Synthase/genetics , Terpenes/metabolism , Zebrafish Proteins/genetics , Zinc Finger Protein GLI1/genetics , Animals , Anticholesteremic Agents/pharmacology , Atorvastatin/pharmacology , Benzophenones/pharmacology , Body Patterning/drug effects , Body Patterning/genetics , Cell Differentiation/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Embryo, Nonmammalian , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Neural Crest/drug effects , Neural Crest/metabolism , Neural Crest/pathology , Piperidines/pharmacology , Pyridines/pharmacology , Signal Transduction , Terpenes/antagonists & inhibitors , Zebrafish , Zebrafish Proteins/metabolism , Zinc Finger Protein GLI1/metabolism
16.
Biochem Mol Biol Educ ; 45(6): 501-508, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28520272

ABSTRACT

The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining specifically to the formation of messenger ribonucleic acid (mRNA) transcripts. In the present study, we sought to expand upon these observations through exploration of the influence of orientation cues on students' aptitude at synthesizing mRNAs from provided deoxyribonucleic acid (DNA) template strands. Data indicated that participants (n = 45) were proficient at solving tasks of this nature when the DNA template strand and the mRNA molecule were represented in an antiparallel orientation. In contrast, participants' performance decreased significantly on items in which the mRNA was depicted in a parallel orientation relative to the DNA template strand. Furthermore, participants' Grade Point Average, self-reported confidence in understanding the transcriptional process, and spatial ability were found to mediate their performance on the mRNA synthesis tasks. Collectively, these data reaffirm the need for future research and pedagogical interventions designed to enhance students' comprehension of the central dogma in a manner that makes transparent its relevance to real-world scientific phenomena. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):501-508, 2017.


Subject(s)
Cell Biology/education , DNA/chemistry , Learning , Molecular Biology/education , RNA, Messenger/biosynthesis , Students/psychology , Humans , RNA, Messenger/chemistry
17.
Hum Mol Genet ; 26(15): 2838-2849, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28449119

ABSTRACT

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.


Subject(s)
Repressor Proteins/genetics , Repressor Proteins/metabolism , Vitamin B 12/metabolism , Animals , Base Sequence , Branchial Region/metabolism , Cell Differentiation , Child , Craniofacial Abnormalities/genetics , Fibroblasts , Gene Expression Regulation/genetics , Host Cell Factor C1/chemistry , Host Cell Factor C1/genetics , Host Cell Factor C1/metabolism , Humans , Mutation , Primary Cell Culture , Transcription, Genetic , Vitamin B 12/genetics , Zebrafish/genetics
18.
Hum Mol Genet ; 24(15): 4443-53, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25972376

ABSTRACT

Kabuki syndrome (KS) is a rare multiple congenital anomaly syndrome characterized by distinctive facial features, global developmental delay, intellectual disability and cardiovascular and musculoskeletal abnormalities. While mutations in KMT2D have been identified in a majority of KS patients, a few patients have mutations in KDM6A. We analyzed 40 individuals clinically diagnosed with KS for mutations in KMT2D and KDM6A. Mutations were detected in KMT2D in 12 and KDM6A in 4 cases, respectively. Observed mutations included single-nucleotide variations and indels leading to frame shifts, nonsense, missense or splice-site alterations. In two cases, we discovered overlapping chromosome X microdeletions containing KDM6A. To further elucidate the functional roles of KMT2D and KDM6A, we knocked down the expression of their orthologs in zebrafish. Following knockdown of kmt2d and the two zebrafish paralogs kdm6a and kdm6al, we analyzed morphants for developmental abnormalities in tissues that are affected in individuals with KS, including craniofacial structures, heart and brain. The kmt2d morphants exhibited severe abnormalities in all tissues examined. Although the kdm6a and kdm6al morphants had similar brain abnormalities, kdm6a morphants exhibited craniofacial phenotypes, whereas kdm6al morphants had prominent defects in heart development. Our results provide further support for the similar roles of KMT2D and KDM6A in the etiology of KS by using a vertebrate model organism to provide direct evidence of their roles in the development of organs and tissues affected in KS patients.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Heart Defects, Congenital/genetics , Hematologic Diseases/genetics , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Vestibular Diseases/genetics , Zebrafish/genetics , Abnormalities, Multiple/physiopathology , Animals , Brain/abnormalities , Brain/growth & development , Brain/physiopathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Face/physiopathology , Heart Defects, Congenital/physiopathology , Hematologic Diseases/physiopathology , Humans , Mutation , Vestibular Diseases/physiopathology , Zebrafish/growth & development
19.
Med Res Arch ; 2(8)2015 Nov.
Article in English | MEDLINE | ID: mdl-26989768

ABSTRACT

Approximately 50% of all congenital anomalies cannot be linked to any specific genetic etiology, but in recent years cost effective high throughput sequencing has emerged as an efficient strategy for identifying single nucleotide polymorphisms (SNPs) associated with disease. However, in many cases there is not enough evidence to determine if these SNPs underlie disease. To bridge this gap in our understanding advances in functional analyses are warranted. Several preclinical model systems are currently being utilized to provide such evidence, including the advantageous zebrafish embryo. While every system exhibits disadvantages and caveats, a new era of multidisciplinary research has evolved, which uses a broad spectrum of functional analysis tools. This approach will make it possible to identify potential therapeutic targets for both common and rare human disorders.

20.
Dev Biol ; 396(1): 94-106, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25281006

ABSTRACT

Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression.


Subject(s)
Carrier Proteins/physiology , Gene Expression Regulation, Developmental , Host Cell Factor C1/physiology , Zebrafish Proteins/physiology , Animals , Body Patterning/genetics , Branchial Region/physiology , Carrier Proteins/genetics , Cell Differentiation , Cell Movement , Chondrocytes/cytology , Craniofacial Abnormalities/genetics , Gene Knockdown Techniques , Green Fluorescent Proteins/metabolism , Host Cell Factor C1/genetics , Humans , Mice, Transgenic , Mutation , Neural Crest/cytology , Neural Crest/physiology , Oxidoreductases , Phenotype , Stem Cells/cytology , Vitamin B 12/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...