Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Food Prot ; 81(4): 677-683, 2018 04.
Article in English | MEDLINE | ID: mdl-29557672

ABSTRACT

The use of chloramphenicol (CAP) in aquaculture products is banned in many countries, including the United States, due to human health issues. Very few depletion and metabolism studies of CAP in seafood have been performed. Current detection methods for CAP residues in food are directed toward the parent drug molecule, but rapid elimination following treatment suggests the need for an alternative marker residue. We identified, characterized, and determined the persistence of two CAP metabolites, CAP-base (CAP-B) and CAP-alcohol (CAP-OH), in crab and shrimp. Interday recoveries of CAP, CAP-B, and CAP-OH in muscle fortified ( n = 9) at levels of 0.15 to 0.60 ng/g ranged from 95 to 127% and 101 to 119% for crab and shrimp, respectively, with repeatability ranging from 4 to 19%. The limit of detection for CAP and metabolites in crab and shrimp ranged from 0.05 to 0.11 ng/g. We also monitored the depletion of CAP, CAP-B, and CAP-OH in crab following waterborne exposures. To our knowledge, we present the first CAP depletion and metabolite study following waterborne exposure in crabs, with the aim of identifying alternative marker residues.


Subject(s)
Brachyura , Chloramphenicol , Drug Residues/analysis , Food Contamination/analysis , Palaemonidae , Animals , Anti-Infective Agents/analysis , Aquaculture , Brachyura/chemistry , Chloramphenicol/analysis , Palaemonidae/chemistry , Seafood , Shellfish/analysis
2.
PLoS One ; 11(4): e0153348, 2016.
Article in English | MEDLINE | ID: mdl-27073998

ABSTRACT

Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample throughput, and is well-suited for routine CTX monitoring programs.


Subject(s)
Ciguatera Poisoning/diagnosis , Ciguatoxins/isolation & purification , Fishes/metabolism , Animals , Chromatography, Liquid , Protein Binding , Rats , Rats, Sprague-Dawley , Synaptosomes/metabolism , Tandem Mass Spectrometry
3.
Mar Drugs ; 12(1): 88-97, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24378919

ABSTRACT

Invasive Indo-Pacific lionfish (Pterois volitans) have rapidly expanded in the Western Atlantic over the past decade and have had a significant negative impact on reef fish biodiversity, habitat, and community structure, with lionfish out-competing native predators for resources. In an effort to reduce this population explosion, lionfish have been promoted for human consumption in the greater Caribbean region. This study examined whether the geographical expansion of the lionfish into a known ciguatera-endemic region can pose a human health threat for ciguatera fish poisoning (CFP). More than 180 lionfish were collected from waters surrounding the US Virgin Islands throughout 2010 and 2011. Ciguatoxin testing included an in vitro neuroblastoma cytotoxicity assay for composite toxicity assessment of sodium-channel toxins combined with confirmatory liquid chromatography tandem mass spectrometry. A 12% prevalence rate of ciguatoxic lionfish exceeding the FDA guidance level of 0.1 µg/kg C-CTX-1 equivalents was identified in fish from the U.S. Virgin Islands, highlighting a potential consumption risk in this region. This study presents the first evidence that the invasive lionfish, pose a direct human health risk for CFP and highlights the need for awareness and research on this food safety hazard in known endemic areas.


Subject(s)
Ciguatera Poisoning/epidemiology , Fishes/physiology , Marine Biology , Seafood/adverse effects , Animals , Atlantic Ocean , Biodiversity , Caribbean Region , Chromatography, High Pressure Liquid , Ciguatoxins/chemistry , Ecosystem , Food Safety , Humans , Indicators and Reagents , Marine Toxins/toxicity , Meat/analysis , Meat/toxicity , Neuroblastoma/pathology , Predatory Behavior , Sodium Channel Blockers/toxicity , Tandem Mass Spectrometry , Toxicity Tests , United States Virgin Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...