ABSTRACT
The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule.
ABSTRACT
The reactivity of the 14F7 Mab, a highly specific IgG1 against N-glycolyl GM3 ganglioside (NeuGcGM3) in normal tissues, lymphomas, lymph node metastasis, and other metastatic sites was assessed by immunohistochemistry. In addition, the effect of chemical fixation on the 14F7 Mab staining using monolayers of P3X63Ag.653 cells was also evaluated. Moreover, the ability of 14F7 to bind NeuGcGM3 ganglioside inducing complement-independent cytotoxicity by a flow cytometry-based assay was measured. The 14F7 Mab was reactive in unfixed, 4% paraformaldehyde, 4% formaldehyde, and acetone fixed cells. Postfixation with acetone did not alter the localization of NeuGcGM3, while the staining with 14F7 Mab was significantly eliminated in both cells fixed and postfixed with methanol but only partially reduced with ethanol. The staining with 14F7 Mab was evidenced in the 89.2%, 89.4%, and 88.9% of lymphomas, lymph node metastasis, and other metastatic sites, respectively, but not in normal tissues. The treatment with 14F7 Mab affected both morphology and membrane integrity of P3X63Ag.653 cells. This cytotoxic activity was dose-dependent and ranged from 24.0 to 84.7% (10-1000 µ g/mL) as compared to the negative control. Our data could support the possible use of NeuGcGM3 as target for both active and passive immunotherapy against malignancies expressing this molecule.