Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960136

ABSTRACT

Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, ß-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 µg/mL and 30 µg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 µg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation.

2.
Plants (Basel) ; 12(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771644

ABSTRACT

The inflammatory process, although beneficial, can produce tissue damage and systemic damage when uncontrolled. Effective therapeutic alternatives with little or no side effects are of great therapeutic interest. This study aimed to determine the phytochemical composition of bark extracts from J. cordata, an endemic plant from México, and evaluate their in vitro anti-inflammatory activity. Hexane, ethyl acetate, and methanol extracts were characterized by qualitative phytochemical tests, and their bioactive groups were identified by 1H NMR and gas chromatography coupled to mass spectrometry (GC-MS). The extract's anti-inflammatory activity was evaluated as nitric oxide (NO) production and their cytotoxicity by an MTS cell proliferation assay in lipopolysaccharide (LPS)-activated RAW 264.7 cells at concentrations of 1-100 µg/mL. The hexane extract contained fatty acids, fatty esters, phytosterols, alkanes, vitamin E, and terpenoids; the ethyl acetate extract showed fatty acids, fatty esters, aromatic aldehyde, phytosterols, vitamin E, and terpenoids, while the methanolic extract showed fatty esters, fatty acid, aromatics aldehydes, and alcohol. The ethyl acetate extract showed the highest inhibition of NO production, followed by the methanolic extract and the hexane extract, without affecting the viability of RAW 264.7 macrophage cells. The results suggest that J. cordata extracts are a potential source of bioactive compounds with anti-inflammatory potential.

3.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209032

ABSTRACT

In Mexico, the mango crop is affected by anthracnose caused by Colletotrichum species. In the search for environmentally friendly fungicides, chitosan has shown antifungal activity. Therefore, fungal isolates were obtained from plant tissue with anthracnose symptoms from the state of Guerrero in Mexico and identified with the ITS and ß-Tub2 genetic markers. Isolates of the Colletotrichum gloeosporioides complex were again identified with the markers ITS, Act, ß-Tub2, GADPH, CHS-1, CaM, and ApMat. Commercial chitosan (Aldrich, lot # STBF3282V) was characterized, and its antifungal activity was evaluated on the radial growth of the fungal isolates. The isolated anthracnose-causing species were C. chrysophilum, C. fructicola, C. siamense, and C. musae. Other fungi found were Alternaria sp., Alternaria tenuissima, Fusarium sp., Pestalotiopsis sp., Curvularia lunata, Diaporthe pseudomangiferae, and Epicoccum nigrum. Chitosan showed 78% deacetylation degree and a molecular weight of 32 kDa. Most of the Colletotrichum species and the other identified fungi were susceptible to 1 g L-1 chitosan. However, two C. fructicola isolates were less susceptible to chitosan. Although chitosan has antifungal activity, the interactions between species of the Colletotrichum gloeosporioides complex and their effect on chitosan susceptibility should be studied based on genomic changes with molecular evidence.


Subject(s)
Antifungal Agents/pharmacology , Chitosan/pharmacology , Colletotrichum , Mangifera/microbiology , Colletotrichum/classification , Colletotrichum/growth & development , Colletotrichum/isolation & purification
4.
Polymers (Basel) ; 13(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34578006

ABSTRACT

Wheat is a highly relevant crop worldwide, and like other massive crops, it is susceptible to foliar diseases, which can cause devastating losses. The current strategies to counteract wheat diseases include global monitoring of pathogens, developing resistant genetic varieties, and agrochemical applications upon diseases' appearance. However, the suitability of these strategies is far from permanent, so other alternatives based on the stimulation of the plants' systemic responses are being explored. Plants' defense mechanisms can be elicited in response to the perception of molecules mimicking the signals triggered upon the attack of phytopathogens, such as the release of plant and fungal cell wall-derived oligomers, including pectin and chitin derivatives, respectively. Among the most studied cell wall-derived bioelicitors, oligogalacturonides and oligochitosans have received considerable attention in recent years due to their ability to trigger defense responses and enhance the synthesis of antipathogenic compounds in plants. Particularly, in wheat, the application of bioelicitors induces lignification and accumulation of polyphenolic compounds and increases the gene expression of pathogenesis-related proteins, which together reduce the severity of fungal infections. Therefore, exploring the use of cell wall-derived elicitors, known as oligosaccharins, stands as an attractive option for the management of crop diseases by improving plant readiness for responding promptly to potential infections. This review explores the potential of plant- and fungal-derived oligosaccharins as a practical means to be implemented in wheat crops.

5.
Mycopathologia ; 174(3): 247-54, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22396010

ABSTRACT

This study was conducted to evaluate the possible protector effect of bentonite and zeolite in Bovans chicks fed a diet containing 59 mg kg(-1) of fumonisin B1 (FB1) during 3 weeks. A total of 200 one-day-old male chicks were treated varying the amount of bentonite and zeolite. Chick weight was registered weekly. At the end of the experiment, all the chicks were killed, and the livers were analyzed for gross examination and histopathological changes. Plasmatic activity of alanine amino transferase and aspartate amino transferase (AST) were also determined. Sphinganine and the sphinganine-to-sphingosine ratio in serum were evaluated. Both, bentonite and zeolite showed a protector effect against FB1 adsorption in the digestive tract of chicks. Chicks fed with FB1-contaminated feed, amended either with zeolite or bentonite, were heavier, and no macroscopic lesions were observed in the livers. AST activity might be considered as an indicator for FB1 exposition because AST levels were affected when only FB1 was present in the basal diet. These results indicate that both, zeolite and bentonite can be added into feed to diminish the effects of FB1.


Subject(s)
Antitoxins/administration & dosage , Bentonite/administration & dosage , Fumonisins/antagonists & inhibitors , Fumonisins/toxicity , Zeolites/administration & dosage , Administration, Oral , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Body Weight , Chickens , Diet/methods , Histocytochemistry , Liver/pathology , Male , Sphingosine/analogs & derivatives , Sphingosine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...